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1.0 INTRODUCTION

The goals of this project were to promote an innovative educational and research

experience for students at UTSA in the area of probabilistic structural analysis, probabilistic

methods, and reliability. The NASA John H. Glenn Research Center (GRC) is a leader in the

reliability of turbomachinery for aircraft propulsion and has developed advanced analysis

methods and tools such as the computer code, NESSUS (Numerical Evaluation of Stochastic

Structures Under Stress), in collaboration with Southwest Research Institute (SwRI) [Chamis,

1996; Southwest Research Institute, 1995; Pai, 1995; Millwater et al., 1992]. The staff at SwRI

are experts in the area of probabilistic analysis. Because of the close proximity of SwRI and the

University of Texas at San Antonio (UTSA) collaboration frequently exists to promote education

and research. This report describes the collaborative effort between UTSA, SwRI and GRC to

improve undergraduate and graduate education in engineering at UTSA. This project includes

both education and research objectives.

The education component consisted of the development and offering of two courses in

mechanical engineering. These courses exposed students to probabilistic methods, emphasizing

the identification and quantification of uncertainties in structures, materials, loads, and failure

modes. In these courses, students studied probabilistic methods and learned to apply techniques

for assessing reliability and identifying important variables, especially for structural problems

using the NESSUS computer program. These engineering courses are intended to expose

students to both theoretical and computational methods used in probabilistic analyses. Dr. Ben

Thacker and Mr. David Riha, research engineers in the Probabilistic Mechanics and Reliability

Section of SwRI, helped to develop the course content and served as instructors for the two
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courses. Both individuals have been involved with the NESSUS code development for over ten

years and have organized and taught annual SwRI short courses on probabilistic analysis and

design [Southwest Research Institute, 1996]. All students attending these classes, or

participating as research assistants, had the opportunity to develop unique skills in the growing

field ofprobabilistic design.

The research portion of this report presents the master's thesis completed by Mr. Cody

Godines. His thesis had two main objectives. The first goal that was successfully obtained was

the enhancement of NESSUS with the ability to perform Latin Hypercube Sampling. The aim of

the second task was to compare Latin Hypercube Sampling to that of Monte Carlo. This was

done by comparing their error in estimating the mean, standard deviation, and 99 th percentile of

the probability density function of four test cases. These test cases are a few of the responses put

forth by the Society of Automotive Engineers (SAE) for the purpose of testing probabilistic

methods.

The grant has provided support for UTSA's Center for Advanced Propulsion Studies

(CAPS) laboratory as it continues to establish an educational and research infrastructure to

conduct more long-term research projects in this area. In particular, NASA funding from this

project has supported two graduate students and four undergraduate students, two course

instructors, a part-time Research Engineer, a part-time Systems Engineer and the Principal

Investigator.
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2.0 EDUCATION

This project provided students at UTSA a unique educational experience in both

theoretical and computational probabilistic structural analysis methods by supporting the

development and offering of two courses. Syllabi for both courses are provided in Appendix I.

Neither course would have been offered if not for this Partnership Award.

In these courses, students had the opportunity to interact with leading researchers in the

area. They were introduced to the NESSUS computer program for probabilistic analysis of

structural and mechanical systems. Emphasis was placed on the identification and quantification

of uncertainties in engineering designs, and the methods used to accommodate these

uncertainties to achieve safe, efficient, and reliable designs. The application areas for

probabilistic analysis and design continue to grow and include: structural analysis, fracture

mechanics, reliability-based design optimization, automotive structures, thermal-fluids,

geomechanics, turbine engine structures, biomechanics, and other engineering applications.

Hence, students were exposed to probabilistic methods that have a wide range of applications.

They gained valuable hands-on experience with analytical and computational probabilistic

methods that will distinguish them from other engineering graduates. Each course is briefly

described here.

ME 5543, Probabilistie Engineering Design

This graduate level course was taught in the Spring 2000 semester. Although exceptional

undergraduate students can petition to take graduate courses at UTSA, none did and only

graduate students attended this class. The instructor was Dr. Ben Thacker of SwRI with
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assistance from Dr. Randall Manteufel, Callie Bast, and Mark Jurena at UTSA. The course

covered topics in probability and statistics, probabilistic design, computational methods, and

reliability. A final project required students to write a program in the language of their choice

that would perform probabilistic calculations using two competitive computational techniques.

The students then chose a response to study that had a significant number of uncertain variables

with various non-normal probability distributions. The programs were written in such languages

as Fotran, C++, Visual Basic, and some students even used Mathcad to perform their

calculations. Mr. Cody Godines was a student in this class and his final project involved the

design of a scuba tank, which was presented to NASA-GRC and is given in Appendix II. His

Fortran code was named Quest. All of the coding performed by Mr. Cody Godines was done

using the SGI 02 (R5000) workstations in the Center for Advanced Propulsion Studies. These

workstations were paid for by prior NASA grants and UTSA cost sharing and are mentioned

below.

ME 4723, Reliability And Quality Control In Engineering Design

A second course was offered during the summer 2000 semester. This class was a senior-

level undergraduate course that was used to satisfy technical electives in the mechanical

engineering degree program. The instructor was Mr. David Riha of SwRI with assistant from the

Dr. Manteufel, C. Bast, and M. Jurena at UTSA. The course covered topics in probability

theory, reliability, testing, probabilistic design, and introduction to the NESSUS computer

program. Students learned how to assess component and system reliability, assess uncertainties

in a system, describe uncertainties using random variables, identify important random variables

in the system, provide information for risk-based decision analyses and reliability-based

optimization, and develop designs that are more cost-effective and reliable.
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Enrollment Data

Five graduate students successfully completed the Spring 2000 course, ME 5543, entitled

"Probabilistie Engineering Design." Fifteen undergraduate students and two graduate students

completed the Summer 2000 course, ME 4723, entitled, "Reliability and Quality Control." All

undergraduate students were upper-division students within two semesters of graduation. A

large percentage of these students are minority students and all are enrolled as degree seeking

students in engineering (either MS or BS). The overwhelming majority of these students are in

the mechanical engineering program, although enrollment is open to electrical and civil

engineering students as well.

CAPS Lab

Both courses consisted of a significant laboratory component. The Center for Propulsion

Studies (CAPS) laboratory at UTSA was utilized for this project. This lab currently contains the

following equipment:

2 SGI Indigo II (R8000) workstations

13 SGI 02 (R5000) workstations

2 Cd-ROM Disk drives

1 4mm DAT drive

1 Lexmark B/W laser printer (Optra S 1250N)

1 Lexmark Color laser printer (Optra SC1275N)
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All of the above equipment was purchased with prior NASA grants and UTSA cost

sharing. No new additional computer equipment was purchased from the existing project,

although, some funds were required for maintenance and supplies.

The SGI computers provide a computational laboratory with advanced graphical

capabilities. This project helps ensure a high level of educational and research use of this

equipment in the area of probabilistic structural analysis methods. NESSUS is currently installed

and running on these computers, hence there was no additional expense for this software.

NESSUS Student User's Manual

A first version of the NESSUS Students User's Manual was written during the first year

of a NASA-UTSA 1997 Partnership Award and completed during the second year of the grant.

It includes a brief overview of the program, explanations of the minimum number of NESSUS

keywords necessary to work laboratory example problems, explanation of output files and a set

of example problems or assignments drawn from structural analysis and reliability applications.

During the first year of this grant, this manual was enhanced by the inclusion of two additional

example problems, as well as, detailed solutions for all of the example problems in the manual.

The first of these two new problems presents a probabilistic analysis of a simple piping

system fluid flow problem. The second problem included in the revised manual is a pressure

vessel design optimization problem adapted from an SwRI NESSUS Short Course problem

[Southwest Research Institute, 1996]. The manual was used in both courses offered during the

first year of this grant and will continue to be utilized in subsequent courses. This revised

student manual is provided as a separate entity that supplements this report.
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3.0 RESEARCH

Undergraduate and graduate students were supported in faculty-supervised research.

Graduate student, Mr. Cody Godines, completed a probabilistic design analysis of a scuba tank

while enrolled in the graduate theory course conducted last spring. His paper, which is about the

redesign of a high-pressure vessel (scuba tank), is provided in Appendix II of this report. Two

well-known methods of probabilistic analysis were used: Monte Carlo and First Order Reliability

Method. Strength degradation and fatigue effects were taken into account. A total of six design

variables were assumed stochastic. Using these two probabilistic methods, design optimization

reduced the probability of failure of the system. Cody also began working on an MS Thesis

topic during the past year. A number of topics were explored with emphasis on improving the

tools or methods in the NESSUS program. He successfully finished the addition of the Latin

Hypercube Sampling (LHS) scheme in NESSUS. LHS is a stratified sampling scheme where the

statistics of the response are quantified throughout its range, not just in the region(s) of high

probability. This algorithm is employed for cases when traditional reliability methods (FORM,

SORM, AMV) fail to converge upon an estimate of the response density parameter (probability,

mean, standard deviation, etc.). This is usually the case in ill-behaved systems. Systems with

disjoint failure regions or those having irregular limit states are examples of ill-behaved systems.

LHS represents another method in the suite of methods that are available to the analysts.

Undergraduate students Luis Rangel and Santiago Navarro assisted in the development of

a new fluid pipe flow problem. This problem was adapted from a thermal systems design

textbook [Hodge and Taylor, 1999]. The textbook describes an uncertainty analysis applied to

the problem to estimate the range of anticipated behavior for a specified piping system and

selected pump. The uncertainties in the piping system include: pipe lengths, diameters,

bending/expansion/contraction loss coefficients, friction factor correlation, wall roughness, and
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elevation changes. The pump manufacturer normally provides the nominal characteristic curve

for a given pump; hence, the uncertainty was estimated to be ten percent. The probabilistic

analysis was completed using NESSUS and shows the range of anticipated behavior, which is in

excellent agreement with the uncertainty analysis provided in the textbook. The uncertainty

analysis was a benchmark to compare our analysis and give confidence to students. The

advantage of the NESSUS software was more clearly demonstrated by predicting the probability

that the design system would maintain a specified minimum flow rate given all of the

uncertainties in the system. The uncertainty analysis is unable to provide this information. The

important parameters were also identified using NESSUS. The probabilistic sensitivity factors

were found to be in good agreement with those identified by the uncertainty analysis. Another

advantage of the NESSUS software is that the important parameters can be characterized

throughout the range of operation, not just at the nominal operating point. For this case, the

relative importance of parameters do not change significantly as a function of the systems flow

rate. However, this advantage may be more prominent in other systems. Both Luis Rangel and

Santiago Navarro were senior level mechanical engineering students at the time of their

contribution to the fluid flow problem and graduated in December 2000.

Ronald Magharing is a sophomore undergraduate student who participated in the

Alliance for Minority Participation (AMP) research program. Because of this program, Ronald

was supported by the AMP program while working with those supported by this NASA grant.

Ronald primarily worked with Luis for 10 weeks during the summer in the CAPS laboratory

where he was exposed to probabilistic methods and tools. He assisted in completing the piping

system analysis.
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3.1 INTRODUCTION

Engineering Studies, Uncertainties, and Reliability

Engineers study many different types of systems using experimental, analytical, and/or

numerical techniques. There are two types of studies - physical and mathematical. A physical

study would occur by observing the real, physical system. A system's inputs are measured, as

are responses and this is repeated for various combinations of inputs. This is often done so that a

mathematical model between a system's inputs and responses can be formed.

In a mathematical study, inputs to the mathematical model governing a system can be set

to certain values and the resulting response values can be calculated. A calculated response

value using certain inputs should represent the response that would be observed in the real,

physical system with similar inputs. This is shown in Figure 1.

Inputs, X SYSTEM

Physical - inputs and outputs are measured

Mathematical - set inputs to calculate outputs

Figure 1 Two types of system studies and their differences

Outputs / Responses

Zi(X_

A system under observation generally has various responses that can be studied and that

depend on many input variables. Responses can be anything from the stress or displacement of a

system at critical locations, to a fatigue life, flow rates, or even measures of how well bone heals

around an implant. Depending on the response, inputs can be many variables and some

examples are the geometry of the system, material properties, loads, flow rates, and/or surface

roughness. There is a vast amount of responses and related inputs that can be measured/recorded
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or calculated/predicted. If a critical response is measured, it would be to determine if the system

is good, or safe, as far as its expectations are concerned. If repeated response measurements are

recorded, it would be found that the response varies. For a number of measurements, the system

response will be in the safe region; however, chances are that the system will fail in a long series

of measurements. Therefore, the important question cannot be: is my system safe? Rather, it is:

what is the probability of observing a good, or safe, system response? The probability of

observing safe system responses is termed the reliability of the system. Conversely, the

probability of failure would be the chances of observing a system response that implies that the

system failed as far as its job functions and other anticipated characteristics are concerned.

A system response will be random because the variables which is depends on are also

random. In fact, during the course of a physical study, an engineer will detect a natural

randomness in the inputs or system parameters, as well as in the response. Measured geometry,

loading, and material properties are examples of items that will exhibit inherent variability if

physically studied. At this point one might ask - why would the geometry and material

properties be considered random? Justifying the question by stating that if studying one system,

they would have one value. The answer is evident if we realize that engineering analyses are

meant to be as efficient and as general as possible. They are meant to apply to a whole set of

systems - the one being studied as well as the ones still manufactured yet not chosen to study.

The geometry or material properties would be different if the experimentalist would have chosen

the next one on the assembly line, or the one after that. This is an excellent way to account for

the periodic replacement of certain system components. The loading on a system can also be

considered random due to the fact that it will change from application to application. Therefore,

many variables that a system response depends on could be any of a range of values; however,
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certain values of each variable are more probable to occur than others.

We have that system responses are random and the probability that the system will be

safe, or its reliability, is a desirable quantity. One can calculate the reliability in one of two

ways. The first way would be to measure the system responses from the physical system. This

can be next to impossible, expensive, and/or time consuming. An alternative approach is to

mathematically model the system response, account for the uncertainties of the underlying

dependencies or random variables, and use mathematical techniques to answer the same set of

questions. The latter technique would be termed a reliability analysis. One weakness of a

reliability analysis is that we must have confidence in the mathematical modeling of the system

as well as in the modeling of the uncertainties of the design variables to which the concerned

response depends on. There is another Achilles' heel to mention, for once committed to

performing a mathematical reliability analysis, the answer must be efficiently obtained with

confidence and accuracy.

The solution of most engineering responses involve computationally expensive

algorithms, and accounting for uncertainties through the use of a statistical or probabilistic

method requires additional computations to an already complex problem. A reliability analysis

will significantly increase computational time because sometimes a single response evaluation

could take hours, even days to obtain. The ideal reliability analysis would then be one that

performs the fewest number of response evaluations and gives an answer to within an acceptable

error limit. There are a number of different methods that can be used in a reliability analysis,

each with their own advantages and disadvantages. It is up to an analyst to decide which one to

use. Also, it would be ideal if the method chosen calculates low error and low effort answers.
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Reliability Methods

Most Probable Point Methods

Several different methods can be used to estimate the reliability of a system. Some

common methods use the most probable point (MPP) as the main step in approximating the

probability of failure of the system, from which the reliability can be calculated. The system

response exists over a domain of probable variables. This probable domain, characterized by a

joint density function, can be approximated with normal distributions. Parameters of these

equivalent normal distributions can be used to map the response and the joint density function to

a reduced space. The domain point in the reduced space that implies a failed response and that

has the highest joint probability is called the most probable point. Most probable point methods

approximate the probability of failure by approximating the response using the MPP as a base

point, and in the standard normal space. Using the MPP location to estimate the probability of

failure will depend on the method under consideration. Table 1 shows a summary of the

common MPP reliability methods as well as a description of each.

Table 1 MPP reliability methods

Most Probable Point Description

Methods
Necessary 1terns for

Reliability
Calculation

Mathematical

Comments

First Order Reliability

Method (FORM)

Hyper plane approximation
of failure surface at the MPP

MPP in standard normal

space

Ratio of failure region to

sample space same in 1-D as
in n-D

Second Order Reliability

Method (SORM)

Quadratic hyper-surface

approximation of failure
surface at the MPP

MPP in standard normal

space, and principal
curvatures at the MPP

Failure surface

approximated by incomplete

or complete quadratic

Higher Order Reliability
Method

(HORM)

High order hyper-surface

approximation of failure
surface at the MPP

MPP in standard normal

space, and necessary
curvatures to fit

approximate _urface

Failure surface

approximated using function
and 1st derivatives at two

point_ on failure _urface

Mean Value (MV),
Advanced Mean Value

(AMV)

MPP locus technique MPP in standard normal

space

Used by FORM, SORM, or
HORM for a more efficient

MPP location
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The most common MPP method is the first order reliability method (FORM). Obtaining

the FORM solution involves approximating the response surface as a first order hyper-plane at

the MPP, in a standard normal space. This method will be conservative if the approximate

failure region does actually contain non-failure points. Hassofer-Lind and Rakowitz-Fiessler

(HL-RF) made two separate contributions to the FORM. First, Hasofer and Lind noted that

invariant calculations can be avoided if the first order approximations to the failure regions are

performed at a point on the failure surface [Hasofer and Lind, 1974]. Rackowitz-Fiessler then

suggested an approach to finding the MPP. This is a constrained optimization problem. The

algorithm will involve finding the minimum distance from the origin of an approximate space of

standard normal variables to a coordinate constrained to lie on the failure surface [Rackwitz,

1976; Ang and Tang, 1984].

Second Order Reliability Methods (SORM) approximate the response as a quadratic

surface at the appropriate MPP and the probability estimate is obtained using the principal

curvatures at the MPP in the standard normal-space; however, this requires additional

computations to obtain second derivatives of the response [Breitung, 1984; Wu and Wirsching,

1987; Tvedt 1990]. Also, higher order reliability methods (HORM) are possible to perform but

do require the appropriate amount of additional computations for gradient calculations on more

than one point on the failure surface [Grandhi and Hopkins, 1997]. Also, because the probability

density function in the standard normal space exponentially decays as the distance from the

origin increases the HORMs would typically only be used for responses that are highly nonlinear

in standard normal space. Therefore, not only are additional response evaluations required once

the MPP is located, but the optimization technique used to locate the MPP might not even be

successful. Other types of FORM, SORM, and HORM could be considered those that locate the
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MPP in a different manner. A mean value (MV) analysis linearly approximates the response

surface using the mean of the underlying random variables as the base point. The approximate

surface will be exact at the mean and, in general, inexact away from the mean. A mean value

solution would then require the use of a reliability method (e.g. FORM) to compute approximate

MPP locations and probabilities for the various response levels; however, the surface is

approximate and therefore so is this MPP locus. The advanced mean value (AMV) solution

updates the response along the MPP locus and associates the previously calculated probabilities

with the updated response value. If a reliability method, complete with its own optimization

algorithm, is repeatedly used to update the MPP locus, a complete CDF of the response is the

result. This is the methodology of the AMV+ ("AMV plus") method [Southwest Research

Institute, 1995].

As shown in Table 1, there is no mention of the HL-RF transformation/algorithm

combination. That is because it is commonly used with the methods shown in the table to locate

the MPP and obtain a reasonable, invariant answer that includes distribution information.

Sampling Methods

Random sampling is another way to estimate probability density parameters of any

measurable or computable response. Sampling is extremely robust because there are no response

function constraints, i.e., differentiable, continuous, etc. that would prohibit its use. Their

disadvantage is that many function evaluations are needed to confident in a low error answer.

Table 2 shows some common sampling techniques.
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Table 2 Sampling reliability techniques

Sampling

Techniques

Monte Carlo

Latin Hyper-Cube

Distributed Hyper-Cube

Quasi-Monte Carlo

Description

Random samples from

each underlying random
variable

Individual variate space

divided into equal

probability bins

Algorithm used to adjust

samples for better
distribution

Samples

deterministically

generated

Necessary Items for

Probability
Calculation

Sufficient number of

samples

Sufficient number of

samples

Sufficient number of

samples

Sufficient number of

samples

Mathematical

Comments

Computationally expensive

Enforce equal probability
of variate sample
occurrence

Different algorithms can be

used to adjust samples

Samples more uniformly

cover hypercube

Monte Carlo (MC) is the most common type of sampling technique. From each

underlying random variable for which the response is dependent on, n random values are taken

such that they are distributed according to what is seen in nature for that variable. The samples

for all individual underlying variables are then paired to form coordinates in a generally

multidimensional space that is the domain of the response. The response is then evaluated n

number of times and the density parameters needed to calculate the reliability of the system or

the associated probability of failure of the system can then be estimated from those response

evaluations. The more response evaluations made, the more accurate the answer and the more

computer time will be spent making the additional evaluations [Southwest Research Institute,

1995].

Another technique is Latin Hypercube Sampling (LHS). It is a stratified sampling

without replaeerncnt in which, for each underlying random variablc thc rcsponsc is dependent

on, n random values are taken from n equal probability regions of that variable's space such that

the n regions completely span the variables probable space. The values from each underlying
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random variable are then paired with each other to form coordinates in multidimensional space

and, finally, n response evaluations can be calculated. These response values are used to

estimate the desired density parameters [Ayyub and Lai, 1991]. The advantage of LHS is that is

enforces a random sampling rule that all values must have an equal probability of occurring.

Distributed hypercube sampling (DHS) uses a swapping algorithm to more evenly distribute the

samples throughout the probability space [Manteufel, 2001]. Quasi-monte carlo is a relatively

new technique that samples points based on a deterministic, low-discrepancy sequence of

numbers [Robinson and Atcitty, 1999].

As shown in Table 2, all of the sampling techniques require that a sufficient number of

samples of the response be computed in order to ensure that the estimates of density parameters

are close to the true values.

Hybrid Methods

Hybrid probability methods are those that use the MPP location and response sampling to

obtain a reliability estimate. Some common hybrid reliability methods are shown in Table 3.

Table 3 Hybrid reliability methods

Hybrid Method

Spherical Based

Importance Sampling

Adaptive Importance

Sampling

Description

Sampling forced outside of

hypershpere

Sampling around MPP

adjusted failure surface

with

Necessary Items for

Probability Calculation
Sufficient number of samples
and MPP location

Sufficient number of samples
and MPP location

Mathematical

Comments

Any hypershpere radius can
be used

First or second order failure

surface at the MPP can be

used

Spherical based importance sampling uses the MPP to direct samples outside of a

hypersphere, closer to the failure region. Harbitz (1986) defines a hypershpere whose surface

contain_ the MPP. Adapti-¢¢ importance 3arnpling involve8 approximating the rc_ponoc at tho

MPP. If the approximate response surface is a hyperplane, then the distance to the plane is

changed and an event probability can be calculated. If the response is approximated with a
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parabola, then its curvature is changed, and a corresponding probability can then be calculated

[Southwest Research Institute, 1995].

General Problems with Reliability Methods

The problem of concern when seeking to estimate the reliability of a system is that

obtaining accurate results is a computationally expensive task. Also, each response calculation

takes a certain amount of computational time. This computational time is usually the limiting

factor in obtaining accurate results. The MPP methods break down if the MPP(s) cannot be

found or are found in an inefficient manner, i.e., evaluating the response too many times. This

can be the result of studying a response that is highly non-linear and/or contains singularities, or

is implicitly defined [Wu et al., 1990]. For the sampling methods, inaccurate results are mostly

due to using too few response evaluations to obtain probabilities that are far removed from

higher probability areas of the response density of concern. Response values will first be

calculated around the probable areas of the response density. The hybrid methods are confronted

with both types of problems.

Reliability Analysis Methodology

Reliability analyses are performed in a methodical manner. For the system under study, a

mathematical model of the system response is used to represent the physics of the system. The

mathematical model is dependent on a number of variables. Some of these design variables are

modeled as being uncertain, stochastic, or random, while others are deterministically modeled.

A design variable should be stochastically modeled in the analysis when it is an important

variable for that response. Important variables are those that will exhibit a high variation and

significantly affect the response when changed. The reliability analysis process continues after

the design variable values, statistics, and/or distributions are known or estimated. Design
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variable statistical data may be available, but if it is not, testing should be performed that

accurately measures the statistics of the appropriate design variable. This must be performed

prior to the beginning of the mathematical reliability analysis. After a mathematical model has

been accepted and all design variables can be correctly modeled, a reliability analysis is

performed by using a known probabilistic method. The result of such an analysis is usually a

complete or partial cumulative distribution function (CDF) of the response, which is used to

quantify the reliability of the system and from which a probability density function (PDF) can be

calculated. A reliability analysis can also identify the important variables of the response, which

allows insight on possible new designs that have a higher reliability. This methodology is

outlined in Figure 2.
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Mathematical Model.

Stress/Displacement/Fatigue/

Damage/Corrosion/Creep/

Fracture... Validate�Verify...

z(x)

I Unknown Design Variable(s)Statistic?

Reliability Analysis

Yes

Design Variables/Data
Deterministic Value

Statistics/Distributions

Reliability Methods

Monte Carlo, Importance Sampling, Latin Hyper-cube, Distributed Monte

Carlo, MVFOSM, MV, AMV, AMV+, FORM, SORM, HORM, AIS

Output

ZDF Output PDF Output Sensitivity Analysis

New Design

Figure 2 Reliability analysis methodology

Areas of Application

Reliability analyses of many different system and their responses have been performed.

It can be shown that a reliability analysis can be a part of many diverse disciplinary backgrounds.

Turbine blade responses due to uncertainties in blade frequencies, damping characteristics, and

flow variations around the blades have been studied [Shah, et al. 1990]. Simulations of the

human factor, i.e. marital status, in making probabilistic structural assessments have been studied

[Chamis, 1993]. Probabilistic analyses of the cervical spine and a risk assessment of neck injury

to female aviators have also been investigated [Thacker et al. 1997]. Using a probabilistic

NASA/CR 2002-212008 19



method, the distribution of a composite's fatigue life when subjected to mechanical and thermal

loading has also been studied [Shah et al., 1995]. Fluid mechanics can also benefit from the use

of probabilistic analysis methods. Manteufel et al. (1997) has studied the travel time of

buoyancy-driven gaseous and gravity-driven aqueous wastewater flows due to uncertainties in

hydro-geological parameters. Analyzing a fluid system while accounting for uncertainties in

design variables would be important if the probability of a response event (i.e., a specific flow

rate) is desired. Harris et al. (2002) shows the use of probabilistic methods in the design of a

fluidic system. A fluid dynamics problem containing fluid-structural interactions could also

benefit from a probabilistic analysis. For example, Higgins et al. (1999) show that uncertainties

present in the design variables of a fluid dynamics problem affect the reliability of the interacting

structure. Basically, statistical and probabilistic methods can be used to aid in the design of any

system such that a mathematical model can be formed to accurately predict the concerned

response.

Purpose and Scope

The purpose of this work is to enhance the Numerical Evaluation of Stochastic Structures

Under Stress (NESSUS) program with the capability to perform LHS sampling, and to compare

the efficiency of LHS to that of MC, which is an existing method that NESSUS contains.

NESSUS is a probabilistic finite element code that has the capability of performing reliability

analysis using almost all of the different methods just discussed. The NESSUS code was

developed for the National Aeronautics and Space Administration's Glenn Research Center

(NASA-GRC) located in Cleveland, Ohio. The NESSUS code was developed by Southwest

Research Institute (SwRI), in San Antonio, Texas. After the necessary debugging involved with

an enhancement of a program, confidence in the new Latin Hypercube implementation is gained
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by studying the distributions of several response density parameters as they vary with the number

of samples used to obtain each estimate of the respective parameter. The density parameters

estimated were the mean, standard deviation, and the 99 th percentile of the response of four

different test cases put forth by the Society of Automotive Engineers for the purpose of

comparing different probabilistic methods. The results were compared to the same study

performed using Monte Carlo sampling.

Latin Hvpercube Sampling Enhancement

The scope of the NESSUS LHS enhancement was limited to the addition of seven Fortran

90 files to the existing 907 NESSUS files for the purpose of obtaining an LHS sample set,

evaluating the necessary response, and estimating response density parameters. The LHS thread

is organized, non-repetitive in any calculations, and is documented in this thesis. Any changes

made to the source code were done for the purpose of implementing the LHS method or to

improve the current capabilities of the code. Potential changes that could be made to better

NESSUS were noted. All of these actions and observations that took place during this half of the

work are comments in the first file in the LHS thread - lhs rnain.f90. Thus, they are a

permanent part of the source. They are also documented in this paper in Sections 3.4 and 3.6.

This LHS enhancement portion of the research was completed taking the following steps:

1. Obtain the source code from Southwest Research Institute.

2. Study the existing Monte Carlo thread. Follow the subroutine path, any reading from files,

and any writing to files.

3. Study the Latin Hypercube method. Learn how samples are obtained and how correlations

among the variables can be obtained before the sample set is used to evaluate responses.
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4. Write the necessary code (add new files and change existing files) needed to perform LHS

sampling.

Convergence Studies

The scope of the convergence studies was limited to repeatedly estimating the mean,

standard deviation and 99 th percentile of the response of 4 test cases using a various number of

response evaluations and two statistical methods - Monte Carlo and Latin Hypercube. By

repeatedly estimating those density parameters the variation of repeated estimates about the exact

or true value is captured. Given an appropriate amount of response evaluations, the distributions

of all three parameters are centered about the exact value; therefore, the variation of repeated

estimates is an important comparison quantity. Confidence in single estimates of each parameter

using each method was used to compare MC to LHS.

There were two types of confidence measures that were used to compare MC and LHS.

For the first type, the estimation error from the exact (assumed) parameter was compared for MC

and LHS for a specific number of response evaluations and at the fifty percent (50%) confidence

level. The second type of confidence statement was the comparison of MC and LHS in terms of

the number of calculations necessary for 99.7% of repeated parameter estimates to be within a

specific estimation error that varied from test case to test case and from density parameter to

density parameter.

The test eases are part of a set problems put forth by the Society of Automotive Engineers

(SAE) G-11 Probabilistie Methods Committee. They have been compiled over the years from

the probabilistic mechanics community in order to compare probabilistic algorithms and reveal

both advantages and disadvantages.
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This convergence study portion of the research was completed taking the following steps:

1. Obtain the test cases from Southwest Research Institute.

2. Obtain any literature that performs a probabilistic analysis on any of the test cases.

3. Write the input (*.dat) files for NESSUS to use during the MC and LHS runs.

4. Code up the response functions in Mathematica 4.0 (Wolfram Research, 1996) and

compare calculations to those of a NESSUS MC or LHS run.

5. Perform NESSUS runs for all test cases.

6. Plot results and draw conclusions from observations.

Organization

This thesis is organized to present the necessary background and the results of the

numerical test cases in a manner that allows the reader to understand all the concepts and results

that will be talked about. The section 3.2 is a background on using statistics to obtain density

function from data. Basic statistics and response function concepts and are discussed from an

engineering reliability point of view. Estimation is the topic of section 3.3, where the similarities

and differences of Monte Carlo and Latin Hypercube Sampling are discussed. Next, and still in

section 3.3, using MC and LHS to obtain estimations of the mean, standard deviation, and 99 th

percentile from response data is discussed. After which, the general topic of using an estimator,

that is itself a random variable, to obtain estimates of density parameters is discussed. NESSUS

is the topic of section 3.4. Its present state is introduced and then its Monte Carlo capabilities,

inputs, and outputs are discussed. The new Latin Hypercube module is introduced first by

discussing the capabilities, and the input and output files. Section 3.4 continues with a

discussion on the method used to obtain the necessary correlation between the variables for

which a response is dependent on. The section is finished after a discussion of the necessary
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changes made to the original source code. Section 3.5 compares the convergence to a low

variation of the distribution of means, standard deviations, and 99 th percentiles using MC and

LHS with an increasing number of response evaluations for four SAE test cases. An estimator

with a low variation will imply that there is a greater probability for a single estimate being

within the same error interval when compared to the probability associated with an estimator

distribution that has a high variation. The error in estimation along with the effort required to

obtain accurate results are the decisive measures used to compare MC and LHS. Results were

obtained from the existing capabilities of NESSUS, as well as, the new LHS capabilities of

NESSUS. When needed, computational checks and graphics were obtained using Mathematica

4.0 [Wolfram Research, 1996]. Finally, section 3.6 contains a summary of research findings as

well as specific conclusions drawn.
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3.2 RELIABILITY AND THE DENSITY FUNCTION

The probability at which certain response values will be observed can be a useful tool in

engineering analysis, design, or marketing/production of a system. The reliability of a system

can be quantified by estimating the probability of observing "safe" system responses. For the

most part, systems are designed so that values of various responses a system can have -

displacement, stress, temperatures, accelerations, etc., are expected to be in a range of safe

values. However, due to randomness in variables like loads, which will vary from application to

application, or geometry, which will vary because repeatedly manufactured products are not

exactly alike, a system will exhibit a variation in its different responses. Unfortunately, some of

the systems will fail; and, so, it is no longer enough to state that a system is expected to be safe.

It is necessary for many analysts, designers, and manufactures to state that their product is, for

example, 99% reliable. That could mean that 1 out of every 100 like products manufactured

could fail at their duties or that 1 out of every 100 applications of a single product will result in

the failure of that product. Depending on the product, a statement like that can be a selling point,

or a reason to go back to the drawing board. In either case, the reliability of a system can never

be stated, or calculated, if the uncertainties in the variables for which the response is dependent

on are never accounted for.

In order to calculate the reliability of a system, the uncertainties in the underlying design

variables that govern a response need to be mathematically modeled. A response with stochastic

dependencies will itself be a random variable, and, because of this, the probability that the

response will be safe can be estimated through the use of a variety of probabilistic methods.

Typically, a random response will be characterized by its probability density function, or just

density function, which itself is defined by its many parameters. At least three of these density
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parameters can be used to obtain the reliability of the system. The first type of desired parameter

is a measure of central tendency of the response and is called the mean of the response. Another

parameter of interest is a measure of the average spread of the response about the mean, or

expected value. Yet another response density parameter is a response proportion, or ratio. The

proportion parameter is the ratio of the number of responses that would be observed to lie in a

certain range(s) of the response, or bin(s), to the total number of response measurements, or

calculations, after a large number of response observations have been made. All three of these

parameters can be used to evaluate the reliability of a system.

Two major dilemmas are encountered when attempting to calculate the reliability of a

system. The first is that for most practical responses that are studied, their density and hence

their parameters can never be exactly known. The density and parameters of a response can only

be estimated. This section will discuss estimating the density of a response based on a number of

measurements. The topic of section 3.3 will be random sampling and estimating parameters of

the density of a response based on a number of measurements. It will also discuss how

estimators, being a function of random variables are also random and they will have a density

associated with them that is, for a good estimator, centered around the true density parameter.

The second major problem confronted with when performing a reliability analysis is that only a

certain amount of computer time can be spent on the necessary calculations. Fewer response

evaluations implies less computer time that many response evaluations. Section 3.5 will be the

comparison of the efficiency, in terms of response evaluations, of Monte Carlo and Latin

Hypercube Sampling when they are used to estimate the mean, standard deviation, and the 99 th

percentile of several stochastic responses. The 99 th percentile parameter is related to the

response proportion parameter and is used in this efficiency study because it is already known
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that it will be difficult to efficiently estimate and will therefore bring out the differences in the

two methods that are compared.

Very important quantitative statements about response events can be made when the

uncertainties of the underlying random variables that the response is dependent on are accounted

for and used in a reliability analysis. This type of probabilistic analysis allows an analyst to

make probability statements about observing safe system responses when we realize that system

inputs, like loads, are random and that the system itself will not be exactly the same if repeatedly

manufactured. In order to compute the reliability of a system its density, a characteristic of all

random variables, needs to be estimated. This section will discuss random variables and

estimating their density function based on a number of measurements.

Random Variables

We begin with a discussion of random variables, their origin, and how probability

statements can be made from data or a continuous fit to data. Suppose n measurements, or

observations of a variable, are recorded and displayed in a manner similar to Figure 3. This

variable can be anything, from a geometric length, to pressure loads, to crack sizes. We will

assume for the sake of discussion that the measurements in Figure 3 are the crack sizes of 200

different systems. Therefore, the crack size, ai, is a variable that is shown to be random. Also,

the "i" subscript in a; is to indicate that it is an "initial" crack size. All of the recordings lie

between 0 and 0.03. The data is spread out in the vertical direction of the plot only for clarity.

The dark region around 0.008 is an indication that the most values recorded were in that region.

This group is the sample space of crack sizes based on 200 measurements of 200 different

systems. It is a sample of a whole population of possible crack sizes on systems that by chance

were not purchased for the sake of the measurements or that have yet to be manufactured. These
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valuesmustbeusedto estimatethedensityof the population of all possible crack sizes. It can

also be said that any mathematical manipulations of the data are done for the sole purpose of

trying to estimate the density of the population. The density calculated using the sample

measurements is merely an estimate of the density of the population. Both are densities of the

crack size random variable only one is an estimate and the other in never obtainable so we must

make sure that the estimated density captures information about the population of values, not just

the information of the sample of measurements.

Measurement of Variable ai

0.00_( _i_BO.O0_ 0"0_._ 6

0"000_'6_4_ _9_ :(_10313 0 0" 5 017 0.02

0.0v_0N _._t_ _ _ 110 010_%_1jt5_0o: 017 0"02021
0_'0_]lt][II _L_I_flR1 n.t[ 0.015 0_'1 "

v.u_'_ -,_q081 v_t_l 1

0._ .__.o__d_B3 0.017 0.019

0.0044 00d 09 1_ 0.024
000_._.__50'9_._ D0.0_140-01_017 0.019 0.023

ai Sample Space of n=200 Simple Events, E i = 1: n

o.. 0,01 n c_2

Figure 3 Different numerical values recorded while measuring variable a_

0.026

0.025

__03

Each individual observation, or sample point, is a simple event, Eg. It cannot be

decomposed into simpler events. The probability of each simple event can be calculated

according to the relative frequency concept of probability. This probability must be a measure of

one's belief or expectation in the occurrence of that event during one future observation,

measurement, or experiment. Now, it is known based on the measurements made that these

crack size values do exist. In assigning the probability to each simple event, it is assumed, for
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the moment; that these values are actually the population and the probability of each simple

event is obtained by conceptualizing that all the n=200 systems were randomly mixed and we

want the probability of obtaining each of the crack size values during one experiment. This

experiment is a random selection and observation of one crack size value in the sample that is

assumed to be the population. In assigning probabilities to each simple event, they must adhere

to certain axioms of probability, which are given in Equations 1, 2, and 3 [Wackerly, et al. p.27].

Axiom 1. P(A) _ 0.0 (1)

Axiom 2. P(S) = 1.0 (2)

Axiom 3. If A 1, A2, A3,...,An

are pairwise mutually exclusive events in S, then

P(A A 2 w A 3 w ... w An)= Z P(Ai) (3)
i=1

For any experiment with S as its associated sample space, and for every event A in the

sample space, the probability of A, P(A) is assigned such that those three Axioms are true. The

sample space, S, consists of all of the n=200 measurements made, and the event, A, is considered

to be a simple event - it consists of one and only one of the measurements already made. The

experiment would be to randomly draw one value from the group. Because there are 200

different combinations of one-draw experiments from the group of measurements of Figure 3, we

can say that the sample space size, n, is 200. Now, we can assign the probability of each simple

event in the group of measurements the numerical value of P(Ei)=l/n, for i=l,2,...,n. This
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probability is a relative frequency. The probability is the frequency of the event, Ei, which is 1,

relative to the total number of possible observations, or the size of the sample space, n=200.

Note that all of the three Axioms are adhered to. That is, each event, El, has an assigned

probability that is greater than or equal to zero. For the second axiom, consider the sample

space, S, which consists of all events in the sample space. In other words, it is the union of all

simple events - S = E 1 _ E 2 u E 3 _... u E,,. The operator u is the commonly used union

operator in set notation and it is also known as the 'OR' operator. Therefore, the sample space,

S, is the set of all events given by E1 or E2 or E3 or...or En. These simple events are pairwise

mutually exclusive. This is determined by considering any two events, Ej and Ek, which

represent two different measurements of a variable; hence, they are simple events. The events

have nothing in common and observing one event will not imply the observation of the other. If

this can be said about all possible event pairs, Ej and Ek, then all of the simple events for which

the sample set, S, is composed of are pairwise mutually exclusive. The probability of observing

any in the set of values that make up the whole sample space can therefore be determined using

Axiom 3. The probability of observing any value that is a part of the sample space, S, is given

by P(S) =P(E 1 uE 2 uE 3 _...uEn) = P(Ei) = =1.0. This agrees with Axiom 2.
i=l '=

Thus, we have a function, or mapping, from a response value, or event, to its probability, or

relative frequency, of occurrence. The probability function for the group of crack size

observations is shown in Figure 4.
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Probability Function of Variable a_

3
20O

2
200

1

200 .............o.ol 0.02 &o3 ai

Figure 4 Probability function for simple events of the crack size variable, a;

All of the simple events in Figure 4 have an equal probability of occurring.

has a 1/200 or 0.5% chance of occurring if one crack size measurement were repeated at random

from the same 200 different parts that the measurements were originally made from. These 200

systems are one sample set that is used make judgments about the all of the systems that have

already been manufactured, or have yet to be manufactured. All of the possible systems and

their crack size measurements are known as the population of crack size values. The

probabilities of all of the events that exist in the population can never be completely known

because of the large, sometimes infinite, number of measurements that would have to be made in

order to collect the necessary data. Probabilities about a future manufactured part, or a new

measurement to be made from a recently purchased part, are estimated from what was observed

in making the 200 measurements. However, the representation of the data in Figure 4 is poor in

that the probability information cannot easily be extrapolated to find the probability of observing

a value that was not originally observed. The frequency of observation of each simple event has

already been normalized with respect to the size of the sample space; however, there does exist a

better representation of the data with better extrapolation properties. It is obtained when the

simple events are gathered to form mutually exclusive compound events.

NASA/CR 2002-212008 31

Each event



Compound events can be decomposed into simple events. These types of events are

made up of the union of simple events. A compound event can be the observation of

measurements that lie within a range of possible values, e.g. from 0.5 to 1.0, or 1.0 to 1.5.

Fortunately, the Axioms given by Equations 1, 2, and 3 apply to generic events, Ai (not related to

a;), which can be simple events or compound events. Compound events can be formed in any

manner; however, it would help if they are orderly, mutually exclusive and completely span the

range of values of a variable. Figure 5 shows bins that are the compound events of the crack size

response.

Probability Function of Variable ai

I 3

200

2

200

1I :J:llt1
Figure 5 Compound events and the simple events that they are composed of

g,k03

The bins are separated by a vertical line for clarity. The compound events are composed

of simple events.

compound events.

rem]lt of the application of the axiom is given in Equation 4.

BEj EA nEj cA

P(A)=P(EjwEj+,uEj.2_...)= _"P(Ej) = _ 1 _ nEj_A
]=I j=l n n

The important next step is to determine the respective probabilities of the

These probabilities are calculated using Axiom 3 shown in Equation 3. The

(4)
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Thus, the probability assigned to the observation of event A that is composed of the union

of mutually exclusive simple events, Ej, is determined by summing the probabilities of each

simple event in the event, A. In other words, the probability of observing a range of crack size

values, which is a compound event, is the summation of the probabilities of observing each value

in that range, which are simple events. The result is the proportion, or ratio, of the number of

simple events that are elements of the compound event A, nej_A, to the size of the sample space,

n. The desired discrete probability function, or rather all of the probability information that can

be obtained from the original data, is better represented by the plot of Figure 6, obtained when

the range of measured values is divided into non-overlapping, mutually exclusive bins, and the

probability of these compound events are calculated according to Equation 4.

Probability Function of Variable a_

30

).1)3 ai }

Figure 6 Probability function for compound events for the crack size variable, a i

The original n=200 measurements that made up a sample of the whole population of

crack size values has thus been extrapolated, using compound events, to obtain the probabilities
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associated with values that were not a part of the original sample of measurements. We can

conclude that forming compound events and calculating their probabilities extrapolates the

original data for the purpose of making approximate probability statements about the population

of values. Consider the implied meaning of the word extrapolate, yes, some of the crack size

values that were not a part of the original data and for which we now have a probability

associated with them are in between the original data values when visualized against an ordered

scale as shown in Figure 6. This would be mathematical interpolation of data because we are

estimating the probability function between at least two known values of the probability

function. However, the original data is part of one sample set for which we know their

probabilities and the population of all values in not a part of this set and therefore, the known

probabilities are extrapolated outside of the original sample set. In this case, we assume that the

estimated probabilities of the population of all values follow logically from the known

probabilities of the sample set.

In the original 200 observations of a;, the probability of each simple event was able to be

determined and those probabilities followed the three Axioms of probability. The probabilities

are used to measure our belief in future events of the original n=200 observations based on those

same observations, or measurements already made. Zero probability is assigned to events that

were not part of the original set of measurements and that are part of the whole population of

possible crack size values. Yet, just because a value was not observed does not imply that its

probability of occurrence is zero. In fact, it is likely that the probability of an unobserved crack

size value will be close to that of the probability of an observed value so long as the two crack

size values are close to each other. Of course, this "closeness" is a relative measure and must be

small compared to the range of probable values. If the distance between two crack size values is
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on the order of the range of probable values then we cannot assume that their associated

probabilities are close to each other because the probability function can change dramatically

from the beginning of a range of crack sizes to the end. In any case, gathering simple events to

form compound events helps to extrapolate the probabilistic characterization of the original

measurements to other measurements that were not part of the observed data, but, do have a

probability of occurrence. Figure 6 is thus a better representation of the probability function of

the original data because it allows future, yet unobserved events to be associated with respective

probability values.

Also, because the probabilities are summed within each bin, the range of the probability

function shown in Figure 6 is from 0 to about 30/200 and is greater than the range of the

probability function shown in Figure 4 or Figure 5, which is from 0 to 1/200. The right tail of

the probability function of Figure 6 contains 4 compound events, bins, or range of crack size

values, each containing one simple event. This can be verified by observing those bins in Figure

5. By extrapolating the results of the original data we assign the same 1/200 probability to a

future observation of the crack size, ai, that will be any of the values in each of those bins.

Since all four compound events are mutually exclusive, Axiom 3 can be used to determine that

the probability that a future observation of ai will result in a value that lies in any of the four

bins 4/200 = 2%. We might either be content or a little confused at that last statement. Let us

discuss this further while simultaneously obtaining the reason why Figure 6 is still not the best

representation of the data so don't readily accept its simple interpretation.

Consider the last bin on the right of the probability function of Figure 6. For the sake of

numbers, let us say that the bin range is from 0.0255 to 0.0265. From Figure 6 we can conclude

that the probability that a single measurement of a crack size, a_, will be any of the many values
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between0.0255to 0.0265(inches)in a future observationis 1/200(0.5%)basedon the 200

original measurementsmadeand manipulatedto apply to the wholepopulationof probable

values.Thevalueof a_that did land in this range in the original measurements is about 0.026. If

all of the original set of parts from which the measurements made are randomly shuffled, and

one part is randomly picked from that mix, the probability of picking the part with a crack size of

a,.= 0.026 is also 1/200 (0.5%). It is important to realize that these are not the same experiments.

The equivalent experiment to the probability information of Figure 6 is one in which all of the

parts that could be purchased along with those that have yet to be made but still have a

probability of being made are randomly place in a large room and one is randomly picked from

this mix so that the crack size can be measured. This room represents the whole population of

parts with associated crack sizes. The probability that the single crack size measurement will be

between 0.0255 to 0.0265 inches is 1/200 (0.5%) which should agree with the mathematical

manipulation of the original n=200 measurements. Also, this hypothetical random shuffling and

selection is mentioned because random sampling, by definition, occurs when each of the values

has an equal probability of occurring [Wackerly, et. al. p.67]. It is a fundamental rule of random

selection. If they were not randomly shuffled, and were moved such that the high crack size

parts were always in front of a blindfolded selector then the probability of observing certain

crack sizes would definitely be different than in the case of random mixing and selection.

Random sampling via computer simulation of response measurements will also be discussed in

section 3.3.

Figure 6 represents probabilities associated with the whole population of crack size

values, which can come from parts that were, by chance, not purchased or even those that have
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yet to be manufactured, but still have a probability of occurrence. Probabilities can be calculated

that apply to the original data, but it is more practical to be able to calculate the probabilities of

any possible measurement. In short, the probability of observing the compound event where ai

is in between 0.0255 and 0.0265 is obtained by summing the probabilities of the mutually

exclusive simple events which it is composed of, as given by Axiom 3. This probability is

calculated to be 1/200, and this interpretation of Figure 6 also agrees with Axiom 1 (non-

negative probability for each event) and, more importantly, Axiom 2 (probability of all values is

1.0 or 100%). This is not the probability of each event, so one cannot say that the probability

that a; = 0.0259 is 1/200, or that the probability that a e -- 0.0261 is 1/200 (these are two

arbitrary values between the example range of 0.0255 and 0.0265). As there are an infinite

number of values in the example range, statements like this don't agree with Axiom 3 and will

result in probabilities that are over 1.0 or 100%, which is impossible. A probability greater than

100% would be the equivalent of someone measuring crack sizes and saying that out of 200

measurements, 247 of them (124%) were recorded to be within a certain range.

There are several methods for storing all of the probability function information. One

way would be to keep all of the original data and use it for computing probabilities. In that case,

the major drawbacks are that a lot of storage space would be used to store the data and that

computations need to be performed on the data to get the necessary probability information.

Another way would be to store the discrete function of Figure 6. This would amount to storing

the bin range and its respective probability, or relative frequency of occurrence, for all bins that

make up the complete range of the variable. This is not a bad idea; however, tbr Figure 6,

Equation 5 would be the discrete function that would need to be stored in order to predict future
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occurrencesof the variable a;. This method of information storage is better than the first

method in that the probabilities are already computed and the original data does not need to be

kept. Additional computations would be necessary if the probability that the crack will be within

a bin not shown in Equation 5, like a bin consisting of two and a half of the bins shown, or a bin

that is a subset of the ones shown. For example, it can be assumed that the probability 7/200 for

the bin 0.00270 _< x < 0.00405 is equally distributed throughout that range; that is, all of the

values in that range have an equal probability of occurrence. Therefore, if we divide the range

into seven equal bins we can state that there is a 1/200 probability that the crack size will be in

the first sub-bin of 0.00270 _<x < 0.00289. The same can be said about the second sub-bin, the

third, and so forth, up to the seventh sub-bin of 0.00385 _<x < 0.00405. That is fine, however,

these are extra steps that can be performed before the data is stored.
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f_, (x) =

0 x < 0.00270

7/200 0.00270 < x < 0.00405

18/200 0.00405 < x < 0.00540

22/200 0.00540 < x < 0.00675

32/200 0.00675 < x < 0.00810

28/200 0.00810 < x < 0.00945

19/200 0.00945 < x < 0.01080

15/200 0.01080 < x < 0.01215

14/200 0.01215 < x < 0.01350

12/200 0.01350 _< x < 0.01485

12/200 0.01485 < x < 0.01620

8/200 0.01620 < x < 0.01755

3/200 0.01755 < x < 0.01890

2/200 0.01890 < x < 0.02025

4/200 0.02025 < x < 0.02160

1/200 0.02160 < x < 0.02295

1/200 0.02295 _< x < 0.02430

1/200 0.02430 < x < 0.02565

1/200 0.02565 < x < 0.02700

0 0.02700 _< x

(5)

Further manipulation of the data leads to a better way to store all of the probability

information. The next step would then be to normalize each probability, or relative frequency,

by the bin width associated with that probability. In doing so, the assumption that in all

individual values of the crack size have equal probabilities of occurring is enforced; and, the

result is known as a probability density function (PDF). The PDF for the crack size variable is

shown in Figure 7. The probability density function is just that - it is a measure of how much of

the probability is encountered per unit, or volume, of the crack size space.
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Probability Density Function of ai
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Figure 7 Probability density function of measured variable a i

Notice that the shape of the probability function of Figure 6 is the same the shape of the

PDF in Figure 7. This is because all bins were of equal width: 0.00135. Also, the scale for the

probability density function has increased because the relative frequencies, which varied from

0/200 to 32/200, are each being divided by a number less than one; hence, the scale of the

probability density function for this ease is greater than the scale for the probability function.

Characterizing the crack size data with a PDF is a better method because a curve can be fit to the

discrete function. This allows a single equation to represent the probability characteristics of the

response of interest. This will be further discussed immediately a_er this short summary and

statement on recapturing the probability information.

So far, crack size data was collected from measurements of 200 different systems - bars,

beams, rods, ere, and it is accepted that systems with these crack size values do exist because we

did measure those values. Systems with other crack sizes truly or conceptually exist outside of

thi_ _mall _urnpl_ _t of _y_t_m_ ubtuin_d flora _t inmml_actur_r. After all, one more system can

be purchased, the crack size can be measured and it is possible that the value is one not yet

observed. Or maybe, of all the systems made by a manufacturer, there is one crack size value
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that does not yet exist; however, it is possible that the next manufactured system will have a

crack size of that value. The set of all possible values are part of a larger body or set of data

known as the population. The probabilities associated with all values in the population are

desired and we estimate this information from the sample. We first obtain the probabilities

associated with each simple element in the sample such that each simple event, or crack size

value has an equal probability of occurrence. This probability information is extrapolated to the

population by forming compound events and computing the probability of observing a value

within each compound event, or bin. Now, the only way to properly ensure that the probability,

or relative frequency, is equally distributed throughout the compound event, or bin range, is to

divide the associated probability by the respective bin range. This is done for all bins and we

arrive at the discrete probability density function of Figure 7. Therefore, in each bin, we have a

measure of how much of the probability mass is contained per unit volume of the sample space.

Now, the probability of any range of values of a i occurring in a future measurement is

calculated by obtaining the volume between the probability density function and the zero plane

of the domain. The PDF of Figure 7 exists over a 1-D domain and the probabilities are

calculated by obtaining the area under the PDF over any region(s) of interest. Since, for this

case, the probability density function is a measure of the probability per unit of length, obtaining

the area is a matter of multiplying the PDF by the length, or range of the variable under

consideration. For example, the probability density function value for the 10th bin of Figure 7,

which is highlighted, is 51.8519 (the first two bins have zero probability density values). The

range of this bin is from 0.01215 to 0.01350 inches, which is a bin width of 0.00135. Calculating

the area under the PDF in this region is a matter of multiplying 51.8519 by 0.00135, which is

equal to 14/200. This value is shown in Figure 7 and also in Equation 5; hence, calculating the
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area under the PDF over a certain range of crack size values is the method used to get the

probability of those values occurring in future observations.

As previously mentioned, this form of transforming the original n=200 measurements to

characterize the probability of any crack size value occurring is ideal because now a curve can be

fit to the discrete data. The curve fit for this data is shown in Figure 8. Fitting a curve to this

discrete function makes more sense in terms of a mapping from a domain of response, or crack

size values to a range of probability density values. This is because each crack size value, as

many as there may be in a continuous interval containing all probable values, can have its own

probability density value. The major requirement for this PDF to be a good representation of the

probability of observing certain crack size values is that it needs to obey the 3 Axioms of

probability. The first axiom of nonnegative probabilities is obviously true since the PDF in

Figure 8 shows only positive probability density values. The second axiom naturally states that

there should be a 100% probability of observing all events. For the discrete PDF, it can be

readily shown that this true. Consider the PDF, which is obtained from the probability function

by dividing each relative frequency value by its respective bin width; and that all bar, or bin

widths are equal to 0.00135. By obtaining the area under each rectangular bar, we are

multiplying the PDF bar value by the bin width; therefore, reversing the process and obtaining

the same probability function for which the numerical values were shown in Equation 5. Now,

all of these bins are mutually exclusive compound events, so the probability of observing an

event consisting of the union of all events, or bins shown in Figure 8 is obtained using Axiom 3.

This amounts to summing all of the probability, or relative frequency values of Equation 5.

Once this is done we find that the probability of observing any of the whole range of crack size

values is 100% for the discrete probability density function.
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Figure 8 Discrete and continuous probability density function of variable ai

Obtaining the area under the continuous PDF in Figure 8 is not necessarily a difficult task

for this continuous function that exists over a 1-D domain because it amounts to integrating the

function over the concerned values of the crack size, ai. The problem lies in obtaining a curve

fit that ensures that the probability of observing any of the possible crack size values in a future

measurement is indeed 100%. This is Axiom 2 given in Equation 2. The fundamental reason

that a curve cannot be fit to the data of Figure 6 is because that would imply that each crack size

value has its own probability associated with it when in fact that is not the case. A range of

crack size values has one probability of occurrence associated with it. If a curve were fit to the

data and interpreted incorrectly, probabilities over 100% could be mathematically calculated

based on the curve fit. While this is not going to be a discussion on distribution (PDF) selection,

it can be said that there are a number of PDFs, given by mathematical equations, for which it has

been ensured that they obey the laws of probability. A continuous PDF, or just a PDF from here

on out, can be of any form. They usually have parameters associated with them that place the

probable values in a certain regian nfthe _paee of real number_, and that refine the shape of the

fit to match the form of the discrete curve that we are trying to simplify. The PDF for the curve

in Figure 8 is given in Equation 6.
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PDFs are usually given by fa i (X), where the subscript a i denotes the variable whom the

PDF, given by f(x), belongs to. The variable x is a dummy variable that is merely the input to

the function mapping. The PDF of Equation 6 is known as the Log-Normal distribution. The

Log Normal distribution shown is a two-parameter distribution. Its two parameters are the mean,

I.ta,, and the standard deviation, oa. For this distribution, the mean is a location parameter and

the standard deviation is a shape parameter. One trait of the two-parameter Log-Normal

distribution of Equation 6 is that negative values have no probability of occurrence [Southwest

Research Institute, 1995].

Recalling Figure 8, it can be seen that the probable values of the crack size are found in

the region of the domain from 0 to 0.03. If we wanted to obtain the probability that a future

measurement would be any of these values in this domain, or a subset of values like any value

below 0.015, or any value between 0.01 and 0.02, we'd have to integrate the PDF over these

regions as needed. Fortunately, there does exist another representation of the probability

characteristics of the crack size random variable that allows information like that to be easily

read from a graph. This representation is called a cumulative distribution function (CDF), and

can be directly obtained from the PDF using the transformation shown in Equation 7.
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x

(x) = fa, (t)dt (7)
--o0

The CDF at any point, x, integrates the PDF from negative infinity up to that point;

therefore, the value of the CDF at any point, x, is the probability of the future measurement of a

crack size value that will be below x. The probability, p, can be any value between 0 and 1.

Multiply this probability by 100 and we arrive at the probability in terms of percent, 100p%.

The 100p th percentile of the density, fa,, is the value of x, for which Fa, (x)= p. Using

Equation 7 to estimate a CDF would result in a continuous function.

The CDF, or rather an estimate of it, can also be obtained directly from the original

n=200 measurements, in which case, a discrete CDF would result. There are several methods to

obtain a discrete CDF and we will briefly mention one common method that uses the original

n=200 simple events. First, the simple events should be sorted in ascending order. The value of

the CDF for the lowest crack size value would be 1/200, and its value at the largest crack size

value would be 200/200. In general, its value at the jth crack size observation would be j/200.

This implies that the CDF ranges from 0 (0%) to 1 (100%). The PDF and CDF for the crack size

variable are shown in Figure 9.
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Figure 9 The PDF and CDF of the crack size random variable
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The PDF of Figure 9 has its mean, _i, and the location of one standard deviation away

from the mean, _, +o,,, shown by the vertical lines coming down from the PDF. The CDF of

aiuses arrows to indicate that, for this case, the 90 th percentile of aiis estimated to be 0.015

(inches). The mean, standard deviation, and specific percentiles of a response are important

density parameters because they can be used to calculate the reliability of the system.

Reliability

The reliability of a system would be the probability of observing future "safe" system

responses. This reliability will be anywhere between 0 and 1, and it is usually given by Ps. The

only other type of system response would be an "unsafe" system response and, therefore it would

be the other half of the complete percentage. The probability of failure is usually given by

p/= 1- Ps. Calculating the reliability of the system is usually one of the main goals of a

reliability analysis. The reliability can be estimated using the mean and standard deviation

together, which is usually not very accurate. The reliability can also be calculated by estimatinR

the probability associated with specific "safe" response events. In any case, a reliability analysis

has a certain structure, or methodology to it.
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A reliability analysis typically begins with a response that is to be studied. This response

is usually complicated because it models the physics of an actual system. Responses are

typically given by Z(X), where Z is a generic response variable and X represents the

multidimensional space for which the response exists over. As an example, let us consider a

response that is the number of cycles to fracture, Ns, of a system being cyclically loaded. This

response is shown in Equation 8.

afl-m/2 -- ail-m/2 ) (8)

Z(X) = Ny c(1.1215Ao)mrc m/2(1-m/2)

This response is later used in the convergence study discussed in section 3.5. The system

will eventually fatigue fracture at a specific number of cycles, N i . The variable ai, is the initial

crack size within the part in units of inches, c and m are model constants, Ao is the cyclic

loading on the part in units of kilo-pounds per square inch (ksi), and a i

given by Equation 9.

1( 12ai =_- 1.12-_Ao

is the final crack size,

(9)

The variable Klc in Equation 9 is the fracture toughness of the stressed material and its

units are ksi-in 1/2 . The Equations 8 and 9 represent the response of a type of component in a

larger structure that must be repeatedly replaced. Therefore, the geometry of the system is

considered random, and is modeled as such. The other dependencies are treated as constant

values for this 1-D example. The dependencies of Equations 8 and 9 are ._hnwn in Tahla 4 The

final crack size, al, is not shown because it is a function of the variables that are shown.
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Table 4 Design variables for fatigue fracture response

Variable Description I Value or Distribution

I
K_c Fracture toughness 60

a i Initial crack size LN (0.01,0.005)

(in)

e Paris constant 1.2E- 10

(-)

Acy Cyclic load 100

(ksi)

m Paris exponent 3

(-)

In this case, it is unacceptable for the system to fracture (mechanical failure) before 5,000

load cycles. Therefore, the reliability of the component, which is indeed all possible components

that could be purchased, would be the probability of observing a component that would have a

lifetime longer than 5,000 load cycles. This reliability can be calculated if the mean and standard

deviation of the response, _tz and crz , respectively, can be computed. The reliability can also be

calculated if the probability that the response is part of a set of safe response values can be

computed, Pr[Z _ Zs_ E]. Thus, a reliability analysis is entered knowing the response under

study and its dependencies, Z(X) and X, respectively. The way the dependencies are modeled,

either as random variables, or as a constant, is also known. If the variables for which the

response under study are modeled as random variables, then the PDF and its defining parameters

should be known. The variables that are modeled as deterministic, that is, as a constant, should

have a value associated with each one in order to be able to calculate response values.

Furthcrmor¢, a probabili_ti¢ mlaly_i_ _hould be _tatt_d with a t_ompl_t_ uald_l_tunding of fll_

system response and the set of response values that are considered safe, ZsAve.
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1

Pr_Z-_z </aZrz]->l-k-- 5- (10)

or

1

P_Z-p. Z >_k_]_< k2 (11)

Reliability Calculations Using the Mean and Standard Deviation

If the mean and standard of the response, gz and g z, respectively, can be computed, the

reliability of the system can be estimated using Tchebysheff's theorem. A discussion on

Tchebysheff's theorem can be found in section 3.4 of Wackerly, et al. The reliability must be

estimated because even if the mean and standard deviation can be exactly calculated, which is

usually never the case, reliability calculation using Tchebysheff's theorem is still an estimate.

Therefore, in using the mean and standard deviation of a response to calculate the reliability of a

system there is a bit of a compounding of errors. This is seen in many analytical situations,

which includes reliability analyses, where we assume that the response model and each PDF of

the underlying random variables are exact. In any case, at least a value for the reliability is

arrived at which does have theoretical roots.

Tchebysheff's theorem provides bounds for probabilities. It is usually needed when the

distribution of a random variable, like the response, Z(X), is unknown. Tchebysheff's theorem

states that if Z is a random variable with a finite mean and standard deviation, _z and _z,

respectively, then for any k > 1 the following holds true.

Equations 10 and 11 can be used to give estimates of the reliability of the system

governed by the response of Equations 8 and 9. While, either equation can be used for a

reliability estimate, here, Equation 11 is used for an estimate based on knowledge, or at least

estimates of, the mean and standard deviation of the response, _tz and t_z, respectively. As an
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example,supposen=200responsevaluesare calculated and estimates of the mean and standard

deviation are computed to be 17,200 and 8,800 cycles, respectively. The values of the response

below 5,000 cycles are located below the mean at _tz -ka z, where k=1.386. The probability

that Z anywhere outside of the region defined by the distance k6 z away from and on either side

of the mean is computed with Pr_Z-_z [>_kcr z]<_ 1/k 2 =0.52. Divide this number by two to

get 26%, an upper bound to the probability that the response will be less than 5,000 load cycles.

Therefore, the estimated probability of failure is given byp: = Pr[Z ¢ Zsm__ ] _<26%. The

reliability of the system is given by p_ = Pr[Z _ ZsAre ] = 1- py >_74%. Due to the inequalities

of Tchebysheff's theorem it can be said that the probabilities estimated are bounds to the actual

probabilities. The actual probability of failure would most likely be less than the 26% calculated

and the reliability will most likely be greater than the 74% calculated. Thus, we have

successfully used the mean and standard deviation together to obtain an estimate of the reliability

of the system govemed by the response shown in Equations 8 and 9. These probabilities

obtained using Tchebysheff's theorem will be compared to a more accurate answer in the

following pages.

Reliability Calculations Using Probability Calculations

The reliability of a system can also be calculated by estimating the probability of

observing safe system responses. Reconsider the problem previously discussed, where the

reliability is given by p, = Pr[Z e ZSArE ]. Obtaining this value would be a matter of performing

the first integration from the left that is shown in Equation 12.

p,=Pr[Z(X) SZsAFE]= _fz(t)dt= _fx(T)dT= _f_,(t)dt
Z_Zslave X_Z_ZsAFE al_Z_Zsaye

(12)
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The equalities in Equation 12 summarizes the method of distribution functions, which is

used for finding the probability of observing values of a random variable, when it is dependent

on other variables. Proceeding from left to right, we shall explain all of the terms. We have a

function, Z, dependent on, in general, many variables, X, and want to know the probability that

we will observe a safe function response. This can be calculated by integrating the one-

dimensional PDF of Z, fz, over the region for which we want to know the associated

probability, ZSAFE. This integration, as usual, is done using a dummy variable, t. The same

answer would be calculated if we find the region ZSAFE in the M-dimensional X space and

integrate the joint probability density function (JPDF) of X, fx, over that region. Theoretically,

finding the ZSAFE region can be done because Z=Z(X) and each event in the X space has one and

only one Z value associated with it. The JPDF has the similar property of being able to obtain

the probability of events in its domain by integrating the function over that domain, except the

only difference is that it is M-D and the events are joint events, while the PDF is 1-D with

observations from only one group. In applying the general method of distribution functions to

this example under study we consider the last integral of Equation 12. In order to obtain the

probability that the response is safe, or over 5,000 load cycles, we integrate the PDF of the crack

size variable over the region of crack sizes that imply a safe response. Any crack size below

0.031 inches will imply a safe response. This limiting crack size value was obtained using a root

finding technique, something that can almost never be done for practical responses dependent on

many variables. This integration over the safe region of the domain of the response under

consideration is shown in Figure 10. The probability of observing a system with a lifetime that is

over 5,000 load cycles is 99.58%. Stated differently, this system under study is 99.58% reliable.
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This uncertainty in the response is due to the constant replacement of a component of the system

that contains a crack size that is naturally random, and is modeled as such in our mathematical

analysis.

Response Z = Nf And Prcl:ebility Density _.mctd.on
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The reliability obtained by using the method of distributions, p, = 0.9958, and the

probability of failure, Ps = 0.0042, are not the same as the values obtained using Tchebysheff's

theorem, which were calculated to be p, _>0.74 and p/_ 0.26. The reliability obtained using

Tchebysheff's theorem will be greater than 74% and the probability of failure will be less than

26%. Thi8 ia empirically proven in thi_ c_amplc wht_n we abbulnc that tllc integration performed

is exact, and therefore, so is our reliability calculated using the method of distributions.

Although, probabilities obtained using Tchebysheff's theorem are erroneous, at least they
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provide bounds for the actual probabilities of a response with an unknown density or distribution

function [Wackerly et al, p.245].

The reliability of a system can be computed with knowledge of certain density

parameters. Here, the reliability was computed using Tchebysheff's theorem along with the

mean and standard deviation of a response. The reliability was also calculated by calculating the

probability of observing a set of events of the variables for which the response is dependent on

and that imply a safe response.

True, the mean and standard deviation of a concerned system response are desirable, but

even more so is the reliability. Also, for the most part, a system will be designed in a highly

reliable manner; therefore, a reliability analysis usually entails calculating high probabilities

associated with the reliability or low probabilities associated with system failure. The surface

separating the safe and failure region is the same for both calculations. The only difference is

that to obtain the reliability we integrate the JPDF over the safe region and to obtain the failure

probability we integrate the JPDF over the unsafe region. If comparing different reliability

methods, it would be good to know how well they estimate the mean, standard deviation, and the

probability of observing safe system responses, which will be a high probability for a good

design. For ease of such a comparison study, and to be able to test methods with responses that

are purely mathematical, we can compare the ability of several methods in estimating a high

percentile. For the example just mentioned the 99.58 th percentile of the crack size variable is

0.031 inches. The 0.42 th percentile of the number of cycles to failure variable is 5,000 cycles.

The mean, standard deviation, and percentiles are all density parameters that can generally never

be exactly known. They must almost always be estimated in order to calculate the reliability of a

system under study. Section 3.3 will now discuss how Monte Carlo and Latin Hypercube
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Samplingcanbeusedto estimatethemean,standarddeviation,andthe 99thpercentileof the

density of any response under that is random due to the randomness of the variables for which it

depends on.
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3.3 RANDOM SAMPLING AND ESTIMATION

A response function will be random if the variables it depends on are also naturally

random. The randomness of the response can be characterized if the PDF, or just the density, of

the response can be obtained. The density itself is defined by its parameters, some of which can

be used to estimate the reliability of a system under study that is governed by a mathematical,

physics-based response. Accurate estimation of the parameters used to compute the reliability of

a system is important.

One type of desired parameter is a measure of central tendency of the response and is

called the mean of the response. Another parameter that an analyst might be interested in is a

measure of the average spread of the response about the mean, or expected value. This measure

of variation is called the standard deviation of the response. The mean and standard deviation

can be used together to conservatively estimate the probability of observing certain ranges of

system responses. Yet another response density parameter is a response proportion, or ratio.

The proportion parameter is the ratio of the number of responses that would be observed to lie in

a certain range of the response, or bin, to the total number of response measurements, or

calculations, after a long series of response observations have been made. This proportion, or

relative frequency is a measure of the probability that a response will be observed to lie within a

specific range, like a safe response range, in some future event. This is the relative frequency

concept of probability, and it is a simple application to predict future events compared to the

rigorous definition of probability. Calculating response proportion related to safe system events

is a direct way to estimate the reliability because it is the probability of observing safe system

events, computing laigla reliabilities associated with a specltlC response range is dltticult tor

many reliability methods. Equally difficult would be to compute the response range associated
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with a high probability, and the high limit of this response range would be the percentile

associated with that high probability. Percentile estimation allows purely mathematical functions

to be added to the list of test responses used in a reliability method comparison.

The mean, standard deviation, and a high percentile are desired density parameters that

can never be exactly known; therefore, they must be estimated. These parameters can be

estimated using a sample of response evaluations obtained using Monte Carlo (MC) and Latin

Hypercube Sampling (LHS). Both methods are types of random sampling and can be compared

with each other in their ability to efficiently, and accurately estimate desired density parameters.

This section will discuss two random sampling methods - Monte Carlo and Latin

Hypercube Sampling, estimators and estimation, and how sampling methods can be compared.

Section 3.4 will discuss the enhancement of NESSUS to be able to perform Latin Hypercube

Sampling. Section 3.5 will discuss the comparison of MC and LHS in their estimation abilities,

and section 3.6 will then conclude this written work.

Random Sampling

Random sampling is a common computer simulation of response events that might be

physically observed. Many times the simulation is preferred over actually measuring a response

because sometimes the response measurement, be it anything from a stress to a lifetime of a part,

is too difficult and/or expensive to obtain. Quickly described, coordinates in the

multidimensional space for which a response exists over are obtained and that are distributed

such that the probability of joint events in the M-D space is approximately what might be seen in

nature. Response values can be calculated from these coordinates, and these values will be

distributed according to what wil! be observed in nature due because the coordinates in its

domain had a joint density that was (hopefully) accurately modeled. These response values are
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then used to estimate its density parameters. There are several steps used to obtain random

samples of a response.

.

o

2.

o

3.

o

Obtain 1-D coordinates for each individual variable that a response depends on.

Distribute each set of coordinates according to their known density.

Pair the individual variable values with each other to form M-D coordinates.

Pair according to correlation that might exist.

Evaluate the response at each of those M-D coordinates.

Have successfully mimicked observations in nature.

There are quite a few sampling methods to choose from. Monte Carlo and Latin

Hypercube Sampling are two sampling methods. Their only difference lies in the first step of

random sampling - obtaining 1-D coordinates from each individual underlying random variable

for which a response is dependent on.

Monte Carlo Sampling - Its Special Characteristics

Monte Carlo sampling is a popular computer simulation of what might be observed in the

physical world. A mathematical model of a response is known and so are the properties of the

random variables it depends on. These properties can be the PDF, fx, the CDF, Fx, or both.

While there are several steps in random sampling, Monte Carlo random sampling is performed if

the act of obtaining 1-D coordinates for each individual random variable for that a response

dependg on ig done in a certain manner. First, xve aggume that we know how many reepongo

evaluations we can afford to take in order to estimate the necessary density parameters. If we

agree that we can calculate n response values, then we can deduce that we need n M-D
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coordinates to be made by randomly pairing the n 1-D coordinates of each underlying random

variable with each other. In order to perform Monte Carlo Sampling, for each of the M random

variables that is part of the domain of the response, we generate n random numbers between 0

X:, where, j = 1,2,...,M, we use Equation 13 to obtainand 1. Then, for each random variable,

a vector of random samples.

Xj (i) = Fx,-I [Randomi (0,1)] i = 1,2,...,n (13)

Thus, we can then compute a vector of n random samples from each of the M random

variables that a response depends on using the inverse CDF, Fxj-I, of each random variable.

The Randomi(0,1) term is the random number generated, and there are many random number

algorithms to perform this task, but that is not the issue here. The point of emphasis however, is

that these n dissimilar random numbers should be uniformly distributed. They should each have

an equal probability of occurrence. Since the distribution function of every random variable, Fx,

will range from 0 to 1 and most random variables that are observed in nature have a distribution

function that is a one to one mapping, this function can be inverted to obtain as many random

variable values as there are random numbers between 0 and 1. If the n random numbers

generated are uniformly distributed then each of the random variable values obtained has an

equal probability of occurring in this random sample due to the one to one mapping property of

the CDF.

If this process is performed correctly and completely, we should have a vector of length n

for each of the random variables in the domain of the response. Figure 11 shows the independent

inversion of 2 variables that exist in the domain of a response under study. For the record, these

variables are the initial crack size, ai, and the cyclic loading, A_, variables that exist over the
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domain

3.5.

of the first test ease response that will be studied

Monte Carlo Sampling

in section
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Figure 11 Inverting each CDF for Monte Carlo sampling

In Figure 11, n=200 random numbers between 0 and 1 are used as inversion points from

the range of the distribution function of each underlying random variable. The dark arrows show

an inverse for each random variable, and the gray shaded area under the CDFs are the rest of the

random numbers being inverted. Evident from Figure 11 is that the distribution of the random

numbers for Monte Carlo Sampling is not always uniform.
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Latin Hypercube Sampling - Its Special Characteristics

Latin Hypercube Sampling is also a computer simulation of what might be observed in

the physical world. It too begins with knowledge of a mathematical model of a response and the

PDF or CDF of the random variables it depends on. As with Monte Carlo Sampling, the method

that LHS uses to obtain the 1-D coordinates for each individual random variable for that the

response under study depends on is what makes LHS unique. First, we assume that we know we

can afford to calculate n response values. We therefore first need to obtain n 1-D coordinates of

each underlying random variable. In order to perform Latin Hypercube Sampling, for each of

the M random variables that exist in the domain of the response, we generate n random numbers

between 0 and 1 using any good random number generator. They should each have an equal

probability of occurrence, but, as seen from Figure 11, for Monte Carlo sampling, they do not.

For LHS, the generated random numbers are not used in the inversion of the distribution

function. Instead, an additional step is taken that defines LHS. For each of the underlying

random variables, all of the probable space from 0 to 1 is stratified, or divided into n equal

probability bins. One of the dissimilar n random numbers between 0 and 1 is used within each

bin as a percent increase from the lower limit of the bin to the upper limit. Using this new value

between 0 and 1, along with the inverse CDF, Fx_ -_ , we can calculate our desired random

variable value. Repeating this process for as many response evaluations that will be made and

for each random variable will result in a set of n M-dimensional coordinates that are used to

evaluate the response. Thus, for each random variable, Xj, where, j = 1,2,...,M, we use

Equation 14 to obtain a vector of random samples.

F _l[Random_(O,1) + i - 11
Xj(i) = xj L n ] i=l,2,...,n (14)
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For example, if n=200 response evaluations are to be calculated, then n=200 random

numbers are generated. Pretend the first random number is 0.33. Since the first bin is from 0 to

1/200 (=0.005), the first number used as an inversion point in the probability space of the random

variable under consideration is 0.33/200 (=0.00165). If the second random number generated is

0.54, the second inversion point for the respective random variable is 0.0077, which lies within

the second bin of 1/200 (=0.005) to 2/200 (=0.01). This ensures that all of the probable space of

the random variables is completely spanned; and therefore, the fundamental concept of equal

probable variable values in a random sample in more closely enforced. Since the distribution

function of every random variable, Fx, will range from 0 to 1 and most random variables that are

observed in nature have distribution functions that are one to one mappings, the CDF can be

inverted to obtain as many random variable values as there are numbers between 0 and 1.

If this process is performed correctly and completely, we should have a vector of length n

for each of the random variables in the domain of the response. The elements of each vector

should be randomly shuffled in order to obtain random LHS samples for each underlying random

variable. Figure 12 shows the independent inversion of 2 variables that exist in the domain of a

response under study. Again and for the record, these variables are the initial crack size, ai, and

the cyclic loading, Ao. Also, in Figure 12, the initial random numbers generated that are used

as percent increases from the lower bin value are the same raw random numbers that were used

to directly obtain MC samples.
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Latin Hyper_ube Sampling
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Figure 12 Inverting each CDF for Latin Hypercube Sampling

In Figure 12, n=200 random numbers between 0 and 1 are used as percent increases from

the lower values of the n=200 equal probability bins that span the probable space for each

underlying random variable. Because the CDF, or Fx, for each random variable is a one to one

mapping, a uniformly distributed set of numbers that are used as inversion points implies that

each random variable value obtained from the inversion has an equal probability of occurring. It

must be reminded that set of inversion points is not the original set of random numbers

generated, and this is a unique characteristic of LHS. It is obvious from Figure 12 that the LHS

distribution of the numbers used as inversion point is more uniformly distributed than the MC

distribution of inversion points for each underlying random variable when this Figure is
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compared to Figure 11.

The essential differences between MC and LHS sampling is now apparent. Monte Carlo

sampling used the original set of n random numbers as inversion points for each underlying

random variable's CDF, while Latin Hypercube Samples come from using the original set of n

random numbers as percent increases from the lower value of in each of the n equal probability

bins. This still does not cover the random sampling process, and we will now step through it

slowly but surely.

For either MC or LHS, we now have a set of coordinates for each underlying random

variable that exists in the domain of the response under study. These points are shown in Figure

13. The points shown are actually the Monte Carlo points, but what has yet to and will be said

from henceforth applies to both Monte Carlo and Latin Hypercube Sampling.
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Figure 13 Coordinates for each underlying random variable are obtained

The coordinates of each underlying random variable that is part of the domain of the

response, shown in Figure 13, are not just any coordinates. They are distributed according to its
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PDF, which was already known before the reliability analysis began and whose related CDF was

used as the function to invert. The relation of the 1-D coordinates to their own density can be

seen in Figure 14. The density of each of the two random variable used in this example are

shown as a continuous curve, while the density that is approximated by taking n random samples

of each variable is shown as a bar graph. The larger the amount of samples that are taken from

each random variable, the closer the approximate density will be to the true density.
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Figure 14 Distribution of individual coordinates and their relation to their PDF
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The coordinates of each underlying random variable can be paired with each other in

order to obtain M-dimensional coordinates that exist in the domain of the response. They should

be paired with each other in a random manner if the variables are independent. Independent

variables have nothing in common with each other. That is to say that knowledge of one variable

implies nothing about the other. If it is known that a correlation exists between pairs of

underlying random variables, actions should be taken to obtain the multidimensional coordinates

in such a manner as to capture the correlation that is desired. Inducing correlation amongst the

variables in a random sample is not going to be discussed here. Randomly paired 1-D

coordinates that form M-dimensional coordinates are shown in Figure 15.
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Figure 15 M-dimensional coordinates obtained by pairing 1-D coordinates that are appropriately
distributed
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The M-D coordinates in Figure 15 are shown along with the estimated and assumed exact

density of each individual variable for which a response is dependent on as a reminder that they

came from 1-D coordinates that

coordinates were properly paired

are (hopefully) appropriately distributed. If these M-D

with each other according to the correlation between the

variables that exists in nature, which we are trying to simulate, then they have an associate joint

density function, JPDF, or fx (X). In this case, X is then an M-D vector. The JPDF estimated

from the M-D coordinates along with the assumed exact JPDF calculated from the previously

known PDF of each individual variable is shown in Figure 16.

Monte Carlo Sampling
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Figure 16 Estimated M-dimensional JPDF and the exact JPDF
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ThediscreteJPDFshownasrectangularprismsin Figure16is essentiallyanestimateof

the assumed exact JPDF shown as a "see through" surface. Estimating the JPDF is where the

errors lie when random sampling is used to estimate parameters of the density of a response. If

enough coordinates are used to obtain the JPDF estimate, then the JPDF is more accurately

captured and we are more closely simulating something in nature. If each of these simple joint

events is actually measured from a physical system under study, then each would imply a

specific response value. This is true whether or not we decide to measure the response. We can

simulate the measurement of a response if we have a mathematical model that accurately

captures the relationship of the response to the variables it depends on. For a reliability analysis,

we do have a mathematical model and so we use it to evaluate n response values at each of the n

M-D coordinates. This is portrayed in Figure 17. Contour lines representing different surface

levels of the response are shown in Figure 17. The contour plot is placed at the top face of the

box that bounds the density functions for clarity. There are eight contours, equally spaced at

15,000 load cycles apart. The response under study is the same one discussed in section 3.2.

The lowest contour shown and labeled is 5,000 load cycles. The highest contour shown is

105,000 load cycles and the highest one labeled is 35,000 load cycles. From Figure 17, we can

see that when cyclic loading a specimen until fatigue fracture occurs, the number of cycles for

this event to happen will decrease as the initial crack size of the specimen increases. Also, the

system will fail sooner if the load change that defines the cyclic loading is large than when it is

small. Out of the n=200 response evaluations made, 4 of them were under 5,000 load cycles.

Recall that in section 3.2, the response levels over 5,000 cycles implied a safe part and response

levels under 5,000 cycles implied an unsafe repeatedly replaced component.
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Figure 17 Response is evaluated at each of the n M-dimensional coordinates

These n=200 response evaluations can be used to estimate the parameters of the response

density. Some of the parameters that can be estimated from this set of response data are the

mean, standard deviation, and the 99 th percentile of the response. The mean and standard

deviation can be used together to estimate the probability of certain response events occurring in

the future. With certain assumptions about the distribution, this probability can be used to

estimate the reliability of the system. These 200 response calculations can be used to estimate

the reliability of the system if the response level that divides the space into failure and safe
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regions is known. High probabilities are usually difficult to estimate, as are low probabilities.

Therefore, if comparing sampling methods, as is purpose of this work, it would be beneficial to

merely estimate a high percentile because it is already known that this estimation will be

difficult. We will now discuss using n response calculations to estimate the mean, standard

deviation, and the 99 th percentile of a response. After which, we will discuss ways to compare

sampling methods, and this would conclude this section.

Estimators and Estimation

Estimators are rules, or algebraic expressions, that estimate density parameters using a set

of data. Given a set of data and an estimator, a resulting estimation can be made that hopefully is

close to the true value of the density parameter of interest. For the same density parameter, there

can be several types of estimators, or functions, dependent on a set of data. In estimating a

density parameter using several estimators, if would be found that some of them have better

estimation characteristics than others. Comparing estimators for the same density parameter is

not the subject of this work, so it will not be discussed. What will be discussed in this section is

the use of a commonly used estimator in the separate estimation the mean, standard deviation,

and 99 th percentile of the response.

The mean of a response is a measure of where the central tendency of a set of responses

lies. The mean of a response, _z, is estimated by calculating the mean of a sample of responses,

Z. The widely used mean estimator is shown in Equation 15.

=Z=I n-- Z i
,z n i=1

(15)
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The mean estimator, 0_z uses n values of a response, Z; _2 _, in order to estimate the

mean of the response. The observed responses are summed together, and the result is divided by

the total number of observations, n. The mean estimator uses a sample of responses to obtain a

single mean estimate. Since the estimator is a function of random variables it too will be

random. Multiple estimates will produce different values because of the random nature of

obtaining samples of a response. Multiple estimates will be centered about the true mean and the

variation of multiple estimates about the true mean will decrease as more response evaluations

are used to calculate each estimate. For most responses, the shape of the probability distribution

of the mean is mound-shaped even for small sample sized (n=5). It will approach normality for

sample sizes greater than or equal to 30. Observing the shape of the distribution of the mean

estimator can only be performed if repeated experiments are performed [Wackerly et al, 1996].

The standard deviation is a response density parameter that is a measure of the average

spread of the response about the mean, or expected value. It can be estimated using a set of n

response values. The most commonly used estimator for the standard deviation of a response is

shown in Equation 16.

" I 1 ni_=l(Zi-2)2=Sz = (16)

The standard deviation estimator sums up the square of the error of each response value

from the mean, divides by n-l, and then takes the square root of the result. It is an apparent

average deviation of all of the response values away from the mean. The standard deviation

estimator, 0_z , also uses a sample set of n response values to estimate the standard deviation of a

response. It is a function of random variables and is therefore also random. The estimator will

have a distribution associated with it, which, is centered about the true standard deviation. Also,
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its variation about the true standard deviation of the response will decrease as the number of

response values, n, that are used for each standard deviation estimation increases. The

probability distribution of the standard deviation estimator shown in Equation 16 has a longer tail

in the positive direction, i.e. is positively skewed, for small sample sizes; however, it is

approximately normal when n>25 response values are used to obtain each standard deviation

estimate [Wackerly et al].

The 100p th percentile is a response density parameter that is a measure of the location

within the range of values of a response for which it can be observed that 100p% of the values

fall below it in a long series of response observations. It can also be estimated using a set of n

response values. The 100p th percentile estimator is shown in Equation 17.

0_100p% = Zj

j = int[np + 0.5] (17)

' ... '... < Z"Z 1 <_ Z_ < < Zj

The 100p th percentile is estimated using Equation 17 by first sorting the set ofn responses

from least to greatest. The jth element of those responses is chosen as the 100p th percentile so

long as j is the integer part of the rip+0.5. This is essentially rounding j offto the nearest integer.

In a sorted list, kept in such a manner that the 1st element the smallest and the nth element the

greatest, the jth element will have the property such that j/n=p, where p is the fraction of the

responses that are equal to or below the jth element, and 100p% is the percent of response values

below the j_ element. To choose the jth element bases on the fraction, p, is a matter of

multiplying n by p. However, this may not turn out to be an integer and one method to settle this

problem is to select the (j-l) th element, that is a lower percentile than desired, or the (j+l) th

element, which is a higher percentile than what is sought. There are a few methods used to settle

this dilemma, and the method used for this estimator is to round off to the nearest integer. For
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completion, the 99 th percentile is estimated using the general formula of Equation 17 by letting

p=0.99. The percentile estimator of Equation 17 is a function of random variables, and will

therefore have an associated density, or distribution. While, during the duration of this study,

percentile estimation was not encounter in literature to the extent that anything can be said about

the centering of multiple percentile estimates around the true value; nor can anything be said

about the variation of the 99 th percentile estimator distribution as the number of response values

used to obtain each percentile estimate is increased. This is left to the portions of section 3.5 that

discuss some empirical distributions obtained by making multiple 99 th percentile estimates for

the purpose of capturing its distribution.

All of the estimators mentioned are functions of random variables and they will therefore

also be random. This can leads to problems when using a set of n response values for the

purpose of estimating the appropriate parameter(s). In order to completely understand the

problems encountered when using Monte Carlo or Latin Hypercube Samples along with

Equations 15,16, and 17 for the purpose of estimating parameters of the density of the response

we must first discuss estimation and its characteristics.

Estimation is a method used to estimate parameters of the density of a response. The

mean, standard deviation, and 99 th percentile can all be considered desired response density

parameters. Furthermore, the true, or exact value of each of the parameters can be considered a

population parameter. This is because they could be exactly calculated if the whole population

of response values is known. This whole population is mostly very large. Usually, the

population of all response values is infinite in size. Since a population parameter can rarely be

obtained, we let the population parameter be the target parameter of interest; and, we can only

deduce something about the target, which is the exact density parameter. This can be performed
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in two ways: hypothesis testing and estimation [Wackerly et al]. Hypothesis testing will not be

discussed here or in any part of this work.

Population parameters of the response are targets of interest; unfortunately, due to

mathematical complexity of the response and its relation to its dependencies and/or lack of time

necessary for computations, we must settle for estimates of target parameters. Estimation

involves using data that is a sample of the population to deduce something about a target

parameter. There are two types of estimation: point and interval. Point estimation uses sample

data to obtain a single value that estimates the target parameter. Interval estimation, which will

not be discussed in this work, uses sample data to obtain an interval that encloses target

parameter.

Point estimation uses an estimator, which is an equation or rule, to calculate a value that

is an estimate of a target density parameter using sample data. The target parameter is usually

given by 0, and the estimator, O. Estimators are typically random because they are functions of

random variables. They will have a distribution associated with it that is captured when multiple

estimations are used to produce multiple estimates. This concept is depicted in Figure 18.
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Figure 18 Population and Sample Spaces, Estimator and Estimates

Suppose a set, $1, of n response values are calculated using Monte Carlo, Latin

Hypercube, or any other random sampling method and an estimate of a density parameter is

obtained using that sample set. A single estimate can be calculated using sample set 1, and this

estimate is termed0_l = 0_(S_). A different estimate will be obtained using a second, third, and so

fourth, sample set. In general, individual estimates of the target, 0_i, are obtained by using the

estimator, O, with the sample set, Si, as in 0i =0_(S_). It is evident from Figure 18 that a single

estimate is not enough to conclude anything about the target parameter, 0_ . It might be close to

the target like 0_2 and the questionable 0_3, or the estimate may be far from the target like ffl ;

and, unfortunately, a single estimate also gives no information about where it lies with respect to

the target.

If the process of estimation is repeated for a number of repetitions, more sample sets

would be drawn from the population, and more estimates would be made. In fact, the estimator

would exhibit statistical characteristics and a PDF of the estimator, PDF(O), would be the result
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of the repetitions. This concept is also portrayed in Figure 18, which shows a discrete

probability density function of the estimator as horizontal bars and the estimate values range

along the vertical. The PDF is rotated like such to show that the origin of the PDF is repeated

estimates of a statistic, and a continuous curve is shown to remind the reader that the discrete

information may be fitted to a continuous distribution. In fact, an exact distribution for the

estimator does exist and can be captured as the estimation is repeated over and over again.

Furthermore, the estimator changes with the number of response evaluations, n, and the sample

set, Si. Consequently, the distribution of an estimator will be different and for different sample

set sizes, n, and, for the each method used to obtain response sample sets. Observing the

distributions of estimators and how they vary with different sample set sizes is one way to

compare sampling methods.

Sampling Method Comparison

Consider a possible density of an estimator, shown in Figure 19. The estimator, 0_, has

been used many times and we now need to note how close the density of the estimate, PDF (_,

clusters around the target parameter, 0. Usually, the target parameter and the density of an

estimator are never known. In a typically reliability analysis a single estimate of needed density

parameters are calculated and its relation to the target is never known. That is the importance of

studies like this one, which capture the distribution of multiple estimates about the target

parameter for the purpose of comparing MC and LHS.
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Probability Density Function of Estimator

Figure 19 Possible estimator density and position with respect to target

In order to measure the goodness of a point estimator or a sampling method, we can

consider the mean of the estimator density, its variation, and probabilities concerning certain

regions of possible estimates. First, if the mean of the estimator density, _t0., is not the same as

the target, 0, then the estimator is biased. The bias of an estimator or the sampling method that

uses an estimator is the difference from the mean of the estimator distribution to the target

parameter. The bias is shown in Equation 18.

B = la6 -0 (18)

A bias can be positive if the distribution of estimates is centered about a point above the

target parameter. It can also be negative if the mean of the estimator distribution is lower than

the exact value of the density parameter of interest.

Second, the standard deviation of the estimator distribution, _0_, can be calculated using
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Equation16,exceptin this case,the sampleset Zi=l,2,..., n is replaced with the set of estimates,

0 i=1,2....... The subscript r is used for the later case since the number of estimates, r, has nothing to

do with the number of response values used for each estimate, n. As the number of repetitions

increases, the distribution of the estimator is more accurately captured. The standard deviation

of the estimator distribution is also called the standard error of the estimator.

Finally, we discuss probabilities associated with specific ranges of estimates. Knowledge

of possible ranges of estimates and their associated probabilities allow confidence statements to

me made that, in effect, can be used to compare different sampling methods. Confidence

statements are important because they determine the probability that one single estimate of a

density parameter will lie within a specific region of possible estimates. If the exact density

parameter is known, then confidence statements can be made that deal with the probability of a

single estimate lying within a certain error from the target parameter.

It is known that there are three variables to consider when comparing methods by making

confidence statements: (1) effort, number of samples, or response evaluations, used to make a

future estimate, or computational time (2) confidence, measure of possibility that the future

estimate will lie within a certain error or interval from the true value, and (3) error or interval

that a certain confidence is placed in. In order to be able to compare methods one must set two

of the variables equal to each other across the methods and compare the left over variable. For

example, we can set the effort and confidence level to n=l,000 response samples and 50%,

respectively, for MC and LHS. Confidence statements will be made as such: It is found that

there is a 50% probability that a single mean estimate using n=1000 LHS samples will be within

0.20% from the true mean. At the same effort and confidence level, it was found that MC has an
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estimationerrorof 0.50%. Thesameeffort andconfidencewasusedandit is foundthatLHS

had a lower errorthanMC. Anotherway to comparemethodswouldbe to setthe error and

effort equalacrossthetwo methodsandcomparetheconfidencethatafutureestimatewould lie

within thaterrorusingacertainamountof effort. Thiswill notbediscussedin thiswork. Onthe

otherhand,thethirdandfinal wayto comparemethodslikeMC andLHSis to settheconfidence

anderrorequalfor bothmethodsandcomparetheeffortrequiredto obtainthelike results.This

typeof statementwill beusedin this work. For example,it canbestatedthatthereis a 99.7%

confidence(probability)thata singlemeanestimatefor theresponseof a certainsystemwill be

within +1.5% of the true mean using n=10,000 MC samples. In comparison, there is a 99.7%

chance that a single mean estimate will be within +1.5% of the true mean using LHS-500. The

type of confidence statement just made is of the type - equal confidence and error, different

effort. In this case, LHS would require much less computational effort than MC when

confidently estimating the mean of the response. These types of confidence statements allow

random sampling methods to be compared when they are used to estimate the same parameter of

the same response. Furthermore, statements like these appear throughout section 3.5, which

discusses the estimation of the mean, standard deviation, and 99 th percentile of 4 different

responses using both MC and LHS.
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3.4 NESSUS ENHANCEMENT WITH LHS ABILITIES

Introduction to NESSUS

The Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) software is a

probabilistic analysis tool that also has the capability of solving structural mechanics problems

using the nonlinear finite element and boundary element methods. Furthermore, these two

capabilities can be combined to form a complete probabilistic finite element analysis tool. The

program was originally developed for the National Aeronautics and Space Administration's

Glenn Research Center (NASA-GRC) by Southwest Research Institute (SwRI). NASA-GRC is

located in Cleveland, Ohio, and the Southwest Research Institute location that performs

NESSUS development is located in San Antonio, Texas.

The probabilistic methods include Monte Carlo, first and second-order reliability

methods, convolution methods, two types of radius-based importance sampling methods, plane

and curvature-based adaptive importance sampling methods, a mean value method, and two

advanced mean value methods. A user can choose from a variety of design variable distributions

and can even evaluate the reliability of systems with more than one failure mode.

An analyst can code up his/her own response and have NESSUS approximate its

statistics, or NESSUS can be wrapped around any external code to give it the capability of

performing probabilistic analysis of any response - regardless of its scientific origin.

The code was enhanced with the capability of performing Latin Hypercube Sampling.

Because LHS and MC sampling perform nearly the same steps, the thread the code needs to

perform MC sampling was studied so that if any preexisting subroutines, variables, actions could

be performed during the LHS thread, they could be performed in the appropriate manner and at

the right time.
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At the time of this work, NESSUS was in a state of change from old Fortran

programming techniques and abilities to new ones. Global parameters were beginning to be used

and common blocks being avoided. Another important thing to mention is that the input file had

been recently changed to a completely different format. As a result, the code consisted of old

subroutines that used items stored in common blocks and read input from the old input file

format, new subroutines that used global variables and read input from the new input file format.

Yes, it is good programming practice to leave well enough along; however, sometimes changes

had to be made to the original code. All the necessary changes to the original code, given to the

author by the researchers in the Structural Integrity and Reliability section at Southwest Research

Institute for the purpose of the LHS enhancement, are comments in the source code in the first

new file that the LHS thread encounters - lhs main.f90. The author wrote all the subroutines

referenced unless otherwise noted, in which case the author of the subroutine will be given due

credit.

Current State of NESSUS Monte Carlo Thread

The NESSUS Monte Carlo method has many capabilities. An analyst can analyze a

response that is dependant on stochastic variables that come from 11 commonly used underlying

distributions: Normal, Weibull, Lognormal, Maximum Entropy, Uniform, Frechet, Extreme

Value - I, Chi-squared, Curve-Fit, Truncated Weibull, and Truncated Normal. The user may

input probability levels to estimate appropriate response values, response values can be entered

to estimate a probability level, and the software can calculated an entire cumulative distribution

function without the user entering any percentiles or response levels. A reliability analysis of

multiple failure modes can be performed with Monte Carlo sampling. The new input deck,

probabilistic analysis section, is shown in Figure 20. As one can see from the shown section, an
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analyst can choose the start seed used by the random number generator subroutine. The number

of samples in the sample set and the maximum computational time are both user controlled.

Because data acquisition is important, the user is allowed to keep all of the design variable

samples used to calculate responses, the responses, in x-space, and in u-space or ordered subsets

of all of the data. A histogram of the response can also be computed using the Monte Carlo

analysis method.

*METHOD MONTE # Monte Carlo method

(MONTE)
SEED 6974350.

SAMPLES 100

MAXTIME 500000

XSKIP 1

USKIP 1

HISTOGRAM 20.0

*END METHOD MONTE

Figure 20 Monte Carlo section of NESSUS input deck

Flow of Monte Carlo Subroutine Calls

A flow chart of the subroutine calls in a NESSUS Monte Carlo analysis was useful in

implementing the LHS routines. Especially if a certain variable was required to be found - all

files in the source directory were searched for that name and the ones that were in the MC path

were looked at first. A flow chart of the subroutine calls made during a Monte Carlo analysis

using NESSUS is shown in Appendix IV-A. There are over 10 levels (or generations) of
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subroutines. The MC thread begins by prompting for an input file location, opening appropriate

files, printing headers to the screen and output file, initializing all variables, reading the input file

and assigning values to variables, and finally, while in the level 3 subroutine new nessus.fgo, the

MC path entersj_oi.f- a level 4 subroutine.

Unfortunately, it is not until the code is in the level 7 subroutine of monte.f that the

Monte Carlo sample are obtained and the typical calculations are performed. This depth of

subroutines in the MC analysis made it difficult at times to correctly implement the LHS scheme

because the author wished to follow the MC thread, but also leave it as early as possible, and

since, a few needed variables were set down in the level 7 subroutine inranv.f, the author made

the decision to exit early and change the original source as needed.

Monte Carlo Output

The NESSUS program will make and write to several output files. Some of the files are

only made for certain probabilistic methods. For the current Monte Carlo sampling technique,

the NESSUS program creates a main output file, and two optional files, as well as a command

line output. An example output file as well as the subroutines that produce the written output is

shown in Appendix IV-B.

The main output file, filename.out, gets its name from the input file, filename.dat, but has

a different extension (.out). Portions of a MC output file are shown in Figures 21 through 25.

The output file consists of the following main sections:
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°

2.

3.

4.

5.

Code Title and License Agreement

Input Echo

Parameter Information

Model Information

Output Summary

The first section consists of the NESSUS title, the code version, the date that the program

was used to produce that output file, license information, and all the input file main sections

encountered when the program does a check to see if there are no obvious errors in the input file.

This portion of the output file is shown in Figure 21. The next section is an input, or

filename.dat echo. Because of this echo, the user does not need to keep the origmalfilename.dat

file that was used for the appropriate run. The current MC input echo in the output file shows the

old input file format regardless of the type of input file used to run the program. It was

mentioned that NESSUS is in a state of changing programming techniques and input file format.

Well, some of the subroutines read data from the format of the old input file; therefore, a

temporaryfilename.dat file, written in the old input file format, is needed when executing the

program using the new input file format. This section of the output file, shown in Figure 22, was

produced when the new input file format was used for program execution. Therefore, along the

path of subroutines that the NESSUS MC method takes to perform the necessary calculations, a

temporary input file is written in the old format and that is the file used to echo the input to the

output file.

NASA/CR 2002-212008 83



NN NN EEEEEEEE SSSSSSS SSSSSSS UU UU SSSSSSS

NNN NN EE SS SS UU UU SS

NNN NN EE SS SS UU UU SS

NN N NN EEEEEE SSSSSS SSSSSS UU UU SSSSSS

NN NNN EE SS SS UU UU SS

NN NNN EE SS SS UU UU SS

NN NN EEEEEEEE SSSSSSS SSSSSSS UUUUUU SSSSSSS

DATE: 12-26-2001 12:22 -LEVEL3.00(39) -DATEDJUL 1,2000

Build Date: 08/14/01 12:01:21

THIS IS A PROPRIETARY PROGRAM, IT MAY ONLY BE USED UNDER THE TERMS

OF THE LICENSE AGREEMENT BETWEEN SOUTHWEST RESEARCH INSTITUTE AND THE

CLIENT.

SOUTHWEST RESEARCH INSTITUTE DOES NOT MAKE ANY WARRANTy OR

REPRESENTATION WHATSOEVER, EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY

OF MERCHANTABILITY OR FITNESS OF ANY PURPOSE WITH RESPECT TO THE

PROGRAM; OR ASSUMES ANY LIABILITY WHATSOEVER WITH RESPECT TO ANY USE OF

THE PROGRAM OR ANY PORTION THEREOF OR WITH RESPECT TO ANY DAMAGES WHICH

MAY RESULT FROM SUCH USE.

*TITLE SAE TEST CASE 1

*DESCRIPTION

SAE TEST CASE 1 CYCLES TO FAILURE NON-LINEAR* NON-NORMAL 4 RANDOM VARIABLES NO

CORRELATION

*ZFDEFINE

*RVDEFINE

*PADEFINE

*MODELDEFINE

*END NESSUS

End of file reached: checking data.,

Figure 21 Header and introduction section of the MCfilename. out file

1

***** INPUTECHO *****

LINE

1 *FPI

2 NESSUS ge_lerated FPI deck: Analytical modal: ANALYTICAL_I

3 *RVNUM 4

4 *GFUNCTION USER

5 *METHOD MONTE

6 *PRINTOPT

7 *ANALTYP PLEVEL

8 *END

9 *MONTE 1 1

10 100 172 0.00000

11 MAXTIME

12 500000.

13 *PLEVELS 20 1

14 -5.199082 -4.753258 -4.264844 -3.719124 -3.090522

15 -2.326785 -1.281729 -1.036431 -0.6741892 -0.1010067E-06

16 0.6741892 1.036431 1.281729 2.326785 3.090522

17 3.719124 4.264844 4.753258 5.199082 5.611680

18 *DEFRANVR

19 KIC

20 60.00000 6.000000 NORM

21 AI

22 0.1000000E-01 0.5000000E-02 LOGN

23 C

24 0.1200000E-09 0.1200000E-10 LOGN

25 DS

26 100.0000 10.00000 LOGN

27 *END

Figure 22 Input echo section of the MCfilename.out file
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The third sectionon the parameter information repeats the problem title and mostly

summarizes what is evident from the input file or also the echo of the file. It does contain more

background information about the procedures to be used during the program operation. Figure

23 shows this section as seen in the filename.out file. The fourth section interprets the

mathematical model analyzed and is shown in Figure 24. The problem title is repeated as are the

desired response levels, underlying random variable statistics as inputted by the user, the

response type, the method used and appropriate parameters for that method, and options that the

user can define in the input file, like writing all monte carlo sample in x or u space to a

filename.smx or filename.smu, respectively.

1

***** PARAMETER INTERPRETATION *****

Problem Title: NESSUS gelaarated FPI deck: Analytical model: ANALYTICAL 1

Numbes of Random Variables: 4

Type of Respome (g) Ftmetion Approximation:

6 = User-defined respome function

Response function must be programmed in subroutine RESPON

Numbe_ of Datasets: 0

Solution Technique:

6 = Standard Monte Carlo method (Radius = 0)

*MONTE keTword is required in model input data

Analysis Type:

2 = User-defined probability levels (P-leveis)

*PLEVELS keyword is required in model input data

Time consuming anal_is because of itaration procedures

Confide_tee Interval Caleulation on CDF:

0 = No

Print option:

0 = Short printout

Debugging Option:

-1 = No

Figure 23 Parameter interpretation section of the MCfilename.out file
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1

***** MODEL INTERPRETATION *****

Problem Title: NESSUS ge_terated FPI deck: Analytical model: ANALYTICAL_I

User-Defined Probability P-levels:

Number P-Level u-level

+

1 0.10033E-06 -5.1991

2 0.10021E-05 -4.7533

3 0.10009E-04 -4.2648

4 0.99987E-04 -3.7191

5 0.99909E-03 -3.0905

6 0.99883E-02 -2.3268

7 0.99969E-01 -1.2817

8 0.15000 -1.0364

9 0.25010 -0.67419

10 0.50000 0.0000

11 0.74990 0.67419

12 0.85000 1,0364

13 0,90003 1,2817

14 0.99001 2.3268

15 0.99900 3.0905

16 0.99990 3.7191

17 0.99999 4.2648

18 1.0000 4.7533

19 1.0000 5.1991

20 1,0000 5.6117

Random Variable Stm_ties:

Random Vaffable Distrlimt_n Mean Standard Deviation

+

KIC NORMAL 60.00 6.000

AI LOONORMAL 0.1000E-01 0.5000E-02

C LOGNORMAL 0.1200E-09 0.1200E-10

DS LOGNORMAL 100.0 10.00

Usor-Defined Response Flmetion Equation Parameters (Sub [RESPON]) :

Equation Number = 1

Standard Monte Carlo Method (Radius = 0):

IWanimum Sample Size = 100
Seed- 172.000

Allowable Error = 0.100000

Allowable Confidence = 0.950000

Maximum Sample Size = 2000000

Maximum Wall Time (see) = 500000.

Emp_cal CDF Print = OFF

Histogram Print = OFF

X-space samples willbe writtento jobid.smx file.Skip factor= I

u-space samples willbe writtan to jobid.smu file.Skip factor= I

Figure 24 Model interpretation section of the MCfilename. out file
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The filth section summarizes all results and is termed the output summary section. The

output summary section of the filename.out file is shown in Figure 25. The problem title is

repeated along with the type of response analyzed. It is worthwhile to mention that approximate

statistics of the response are calculated and shown in thefilename.out file. These statistics would

be the mean and standard deviation of the response, approximated by fitting the actual response

to a first order surface with the mean of all random variables as the base point. This requires

R+I additional response evaluations, where R is the number of random variables, in order to

calculate the response and gradients at the base point. This is necessary information used to

obtain this type of curve fit; however, depending on the computational time needed to obtain

each response and the method used to obtain a solution, it could be an expensive and

unnecessary step. The output file then repeats some already shown information: the method, the

number of samples, and the number of variables.
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1

***** OUTPUT SUMMARY *****

PROBLEM TITLE: NESSUS ganerated FPI deck: Analytical model: ANALYTICAL_I

RESPONSE FUNCTION (LIMIT STATE): USER-DEFINED FUNCTION

IN SUBROUTINE [RESPON]

APPROXIMATE STATISTICS FOR Z:

MEDIAN Z- Z(MEDIAN X) = 15747.1

Z Approx = 1st Order Taylor Series of Z about MEAN_X

Normal Format on Z_Approx:

MEAN_Z = Z(MEAN X)

MEAN_Z= 14189.2

STD DEV Z = SQRT [ SLIM [((dZ/dXi)*STD_DEV_Xi )^2] ]

STD DEVfl_Z = 7085.86

NOTE: Standardized Normal Variates are used in the following analysis.

This means that the random variable, u_ represm*ts a normal

probability distribution with mean = 0 and standard

deviation = 1. For example, u = -3 implies that the chance

of observing a u value <= -3 is .00135 (cd0. Also, u = 3

implies that the chance of obseaMng a u value <= 3 is 0.99875.

NUMBER OF SAMPLES FOR PLEVELS ANALYSIS: 100

MONTE CARLO SOLUTION:

NUMBER OFVARIABLES = 4

NUMBER OF SAMPLES = 100

SAMPLE MEAN = 1.77381E+04

SAMPLE STD. DEV. = 8.94694E+03

RANDOM VARIABLE STATISTICS:

Random Input Input Sample Sample % error %error

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

........................................................

KIC 60.00 6.000 60.43 6,013 0.71 0.22

AI 0.1000E-01 0.5000E-02 0.9704E-02 0.5273E-02 2.96 5.46

C 0.1200E-09 0.1200E-10 0.1207E-09 0.1241E-10 0.54 3.38

DS 100.0 10.00 99.84 8.715 0.16 12.85

CDF SUMMARY

Pr(Z<=Z0) u Z0 #Pts<=Z0 Error(*)

.......................................................

0.1500006 -1.036431 10112.86 15 0.4665636

0.2500954 -0.6741884 12352.94 25 0.3393892

0.9999999 5.199082 53208.12 100 0.6208121E-04

1.000000 5.611680 53208.12 100 0.1964426E-04
************************************************************************

Probabillstic Semitivity Results printed by level

Level= 6 Z0 = 3698.51 CDF-_.998833E-02 No. Failure Samples= 1

dCo) d(p) d(p) sig d(p) sig
Random ............... * ......... *---

Variable d(mu) d(sig) d(mu) p d(sig) p
..............................................................

KIC 0.5471E-03 -0.1485E-02 0.3286 -0.8920

AI 2.660 1.488 1.332 0.7446

Figure 25 Output summary section of the MCfilename.out file
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ARer all of what's been mentioned, the output file then shows actual results that might be

of interest to an analyst. In Figure 25, the mean and standard deviation of the response based on

the response evaluations obtained by using a user-defined number of MC samples is shown.

This is followed by a brief table of the input mean and standard deviation of the underlying

random variables for which the response is dependent on, the same sample statistics obtained

from an array of MC samples, and the error between the respective values. This is a quantitative

statement about the capturing the individual random variable distributions. The joint probability

density function would be estimated from the samples by appropriate pairing of the random

variable with each other to obtain coordinates in R-dimensional space. After this error check is

shown, a table of the cumulative density function at user-defined points is shown. The table

shows a probability level and the appropriate standard normal level, response level, number of

response elements under that level, and a sampling error for every level of the CDF that the user

specified in the input file. Sampling sensitivities are shown next for every user specified CDF

level. The available calculated sensitivities are the change in probability with respect to the

mean and standard deviation of each underlying random variable, and the same two sensitivities

multiplied by the ratio of the respective underlying random variable to the probability level. The

last thing to printed to the output file that is not shown in Figure 25 is the cpu computational time

from program execution to finish.

There are two optional files that the user has the capability of creating during a MC

analysis through a flag in the input file. They both list the underlying random variable (URV)

samples used to obtain samples of the response. One of them lists the samples in the original or

x-space of the URVs and the other lists the same samples in u-space or standard normal space.
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The latter is obtained replacing each x-sample from every random variable with the u-value

calculated by inverting a standard normal CDF at the same probability level as the x-sample.

The file that contains the underlying random variable samples in x-space that were used

to obtain the response samples is thefilename.smx file. A portion of this file is shown in Figure

26. This Figure shows the file header, which describes the format of the file. It also shows the

filename of the input file with no extension - here thefilename is shown to be clM lh 1. The

individual underlying random variable x-space samples and response are shown row-by-row, for

every sample taken. For this analysis, there are four random variables that the response is

dependent on. The first column of the first row shows the coordinate of the first random

variable, the second column of the first row shows the coordinate of the second random variable,

and so on, up to the fourth column which is the last random variable. These first four columns of

the first row make up one coordinate in the multivariate space that is the domain of the response;

therefore, using this coordinate in 4-D space a response is calculated and shown in the fifth

column of the first row. This continues for all of the samples taken in the analysis.

# FORMAT: DESCRIPTION,TITLE,JOB1D,#LEVELS,#RV S,#GFNS,XPTS(I :N),GFNS( 1 :M)

# X-SPACE SAMPLES AND G FUNCTION RESULTS

# TITLE: NESSUS generated FPI deck: Analytical. model: ANALYTICAL 1

# JOBID: clM_lh_l
# 1 4 1

41.99481 0.1039068E-01 0.1428974E-09 112.3249 5649.685

62.08616 0.1088208E-01 0.1045636E-09 106.9302 12274.04

65.94169 0.1262470E-01 0.1425862E-09 95.48286 12352.94

68.68149 0.1914397E-01 0.1096084E-09 87.97140 15973.79

Figure 26 Thefilename.smx file that contains x-space samples

The file that contains the coordinates of the underlying random variable in u-space is

called the filename.smu file. A portion of this file is shown in Figure 27. The file header

describes the format of the data, the title of the analysis, and the original filename with no

extension, which in this case is clM lh 1. The u-space samples shown are obtained by
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inverting the standard normal CDF at a probability level equal to the aprobability level of the

CDF of the respective x-space sample using the actual distribution type and parameters of that

underlying random variable as specified in thefilename.dat input file. The first column of the

first row is the u-space sample of the first random variable and the second column of the same

row is the u-space sample of the second random variable, and so forth, up to the fourth column.

All four columns make up one coordinate in a 4-D space.

# FORMAT: DESCRIPTION,TITLE, JOBID,#LEVELS,#RVS,#GFNS,UPTS ( 1 :N)

# U-SPACE SAMPLES

# TITLE: NESSUS generated FPI deck: Analytical model: ANALYTICAL_I

# JOBID: elM lh 1

# 1 4 1

-3.000865 0.3173205 1.800579 1.215031

0.3476939 0.4151398 -1.330517 0.7216054

0.9902823 0.7295850 1.778722 -0.4135108

1.446915 1.610935 -0.8581620 -1.234903

Figure 27 Thefilename.smu file that contains u-space samples

Output is also written to the standard output stream of the computer being used, which is

either a DOS or UNIX window. The output is written to the screen as the analysis is being

performed and is mostly a repeat of what is already written to the filename.dat orfilename.out

files. While it is not shown due to its length, it consists of quite a few sections. The output

screen shows a program header similar to the one shown in Figure 21, response and random

variable information, followed by a CDF summary of the response and the total cpu time elapsed

during the analysis.
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New Latin Hypercube Thread

The first thing that was dealt with in the addition of a new statistical method via more

subroutines, defining new global variables, and all other related tasks was to determine what flag

to use in the input file that indicates the Latin Hypercube method and the location of the call to

the first new LHS subroutine in the LHS thread. Since the tasks for MC and LHS are almost

identical and they would require the same initial input information from any input file, the LHS

section in the filename.dat file is identical to the MC section, except for two "LHS" keywords.

The LHS section of the input file is shown in Figure 28.

*METHOD LHS # Latin HyperCube Method

(LHS)
SEED 172.

SAMPLES 100

MAXTIME 500000

XSKIP 1

USKIP 1

EMPCDF

HISTOGRAM 20.0

*END METHOD LHS

Figure 28 Latin Hypercube section of NESSUS input deck

The only difference between the type of input needed for the Monte Carlo method and

Latin Hypercube method is that for the latter case, the input file contains the key lines

*METHOD LHS and *END METHOD LHS instead of *METHOD MONTE and *END

METHOD MONTE. The seed that starts the random number generator can be specified by the

user along with the total number of samples taken during the analysis. The key lines XSKIP 1

and USKIP 1 indicate that samples should be written to appropriate output files. Unfortunately,

the options of specifying a maximum analysis time and printing a histogram output are not yet

available when using the newly implemented LHS method.
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Flow of LHS Subroutine Calls

The path that NESSUS takes when the LHS method is used an analysis is the same as the

Monte Carlo method up to a point in the code. After this, the LHS thread becomes unique to that

method.

The first file encountered by the program when LHS samples are taken is the nessus.f

program file that quickly calls the nesmain.fsubroutine. In other words, the nessus.fsubroutine

is the parent of its child, nesmain.f. The nesmain.fsubroutine performs quite a few initialization

tasks by calling other subroutines. These tasks include prompting the user for input, opening the

necessary files for execution, and writing headers to some of the files. A call is then made to the

new_nessus.f90 subroutine. This subroutine and all of its children and so on down the line is

only called if the new input deck format is used. The relationship between the files just

mentioned is portrayed in Figure 29. This Figure shows the parent subroutines on the left and

their respective children to the right of the parent.

arent Subroutine

LEVEL 1

I NESSUS i
I t

Child Subroutine [

nesmain.F

LEVEL 2 timer.f ........ :iverinc.f

prompt_user.f

intint.f

r -'i reinit.f

_ NESMAIN _ -intini.f

I t header.f

new_nessus.f90

Figure 29 The nessus and nesmain files and the subroutines they call ......
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From this point on, the word subroutine will be not be used and unless otherwise

specified, an italicized name will be that of a subroutine. When new nessus is then entered

several subroutines are called that perform specific tasks. The path to the working directory is

set, and global variables are cleared or initialized by setting them equal to 0, a NULL string, or

the FALSE logical operator, depending on the variable type by calls to set_worlu'ng_directory

and initinput, respectively. The parameters in the new NESSUS input file are then read when

the call to read__nessus_input is made. Model_setup is entered where a file is opened but is not

used for the LHS method. Finally, the LHS breakaway point is encountered. It is in -

new_nessus and right before the fpi.f call, which is never made when the LHS method is used.

After the breakaway point, nothing else happens in the program; therefore, the LHS thread can

stop anywhere in its unique path without missing any tasks that would have been performed by

returning from the LHS thread and continuing on with the program execution.

The breakaway call is made to lhs_main with no arguments. The file containing this

subroutine, and all other files with subroutines that will be mentioned in this section are shown in

Appendix W-C. This type of clean LHS call was important because the only dependencies that

the LHS thread has with what has been previously performed in the program up to this point are

through the variables that were set by reading input from the new input deck format. Yes, the

LHS method will only work with a new input deck format. The next set of parent-child

subroutine relationships are shown in Figure 30.
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arent Subroutine [

LEVEL 3 ]

PROMPT USER-]
1

Child Subroutine]

INTINT

i ' HEADER ' I

NEW NESSUS

set_wo rking_directory.fgo

init input.fgO
read_nessus_input.f90

-model_setup.fgO

lhs_main.fgo

Figure 30 Third level of LHS subroutines. Fpi.fis crossed out because it is never entered

The two main subroutines encountered in lhs_main are lhs_xsample, which obtains LHS

samples, and lhs_calc, which performs calculations with those samples. Obtaining LHS samples

and performing calculations with these samples are the two main steps in the NESSUS LHS

algorithm. Another new subroutine encountered within the LHS thread is named write_files. It

writes output to the appropriate files without any arguments. Global variables are set right

before the call to write_files that indicate what to write, and which files to write it to. These

variables are then reset to their initial state at the end of the writeAfiles subroutine. The children

of lhs_main are shown in Figure 31.

_arent Subroutine ] [Child Subroutine ]

L LEVEL 4 I

•lhsxsample.f9o .......

LHS MAIN .lhs_calc.f90
-- write_files.DO

Figure 31 Child subroutines of lhs_main

LHS samples are obtained for each random variable by obtaining an array of samples

from that random variable. The length of the array is the number of samples to be used in the
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analysis, as entered in the filename.dat file. The samples from each random variable are then

paired with each other in such a manner that the desired correlation between pairs of the random

variables, also entered in thefilename.dat file, is obtained to within a certain degree. Thus, the

samples are arranged to achieve the desired correlation. Once the samples are paired with each

other they become coordinates in the multivariate space that is the domain of the response to be

analyzed. These steps are performed in lhs_xsample, which is in level 5 of the LHS thread.

The calculations performed after LHS samples are obtained are simple. The response is

evaluated using the samples previously obtained as its inputs. The mean and standard deviation

of the response based on the samples taken is then calculated. The response is then sorted. After

this, the response value and its corresponding probability level entered in thefilename.dat file are

then written to output streams or files. The code is then stopped and the analysis is complete.

These steps are performed in lhs_calc, where the command to stop the program is also located.

There will always be a difference between what is desired from a program and how it is

implemented. The writing of a program should be neat and simple, and also take necessary

actions to minimize the computational time for each analysis. Therefore, in order to have a full

understanding of the new subroutines, lhs_xsample and lhs_calc, they will now be discussed in

further detail.
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The lhs xsample.f90 Subroutine

All of the steps necessary to obtain LHS samples are not performed by lhs_xsample itself.

Some calls are made to a combination of already existing subroutines written by several

employees of Southwest Research Institute, and new subroutines written by either the author or

Randall Manteufel, both from the University of Texas at San Antonio. A depiction of

lhs_xsample and its children is shown in Figure 32.

Parent Subroutine ]

LEVEL 5 ]

LHS XSAMPLE

Figure 32 The lhs_xsample and its children

Child Subroutine]

raniset --> iranu (RDM)

random.f (SWRI)

-mapdist.f (SWRI)

calc_stats.f90

writefiles.f90

corr control.f90

icdfpdf.f (SWRI)

The first operation performed in lhs_xsample is to obtain LHS samples of each random

variable. The number of samples taken from each random variable is the same as the number of

response evaluations to be calculated, as entered in the filename.dat file. For each random

variable, one sample is taken from equal probability bins that are non-overlapping, and span all

of the probability range of the variable - from 0 (0%) to 1.0 (100%). This is a stratified

sampling without replacement. Therefore, the first step is to divide the probability space (0,1)

into bins of size l/n, where n is the number of response evaluations to be calculated. A sample

from the first bin, or strata, will be between 0 and 1/n. A sample from thej th bin will be between

(j- 1)/n and j/n, for all j between 1 and n. Thus, preserving the equal probability of simple events

assumption of the relative frequency probability concept. This is performed in lhs_xsample by
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first randomly filling an array with integers ranging from 1 to n. The subroutines raniset and

iranu are used to do this and they are located in the same file as lhs_xsample. The raniset and

iranu subroutines were written by Randall D. Manteufel, the Chair of the thesis committee for

this work. A random number between 0 and 1.0 is then generated by random (SwRI) and used

as the percent increase from the low and high limits of the bin number that is the first entry of the

array of integers. This is done for all values of the integer array and the results are stored in

another array. Thus, the cumulative probability values corresponding to yet unknown random

variable values of the first variable are known and stored. This is done simultaneously for all

random variables in about the first 10 lines of code in lhs_xsample (not including comments).

The cumulative probabilities are then used to obtain the associated random variable

values by inverting the cumulative probability distribution of the respective random variable.

This is done by a call to mapdist, an existing NESSUS subroutine written by a programmer at

Southwest Research Institute. At this point the program has an array filled with coordinates of a

multidimensional space that could be used to obtain response values. However, due to the

random nature of obtaining the samples, spurious correlation between variables might exist

where none is desired, or where a different correlation is desired.

The sample statistics of each random variable are then calculated and written to a file

with calls to talc_stats and write files. Also, the statistics of the cumulative probability values

are calculated using the same two subroutines. Thus, an analyst will have the opportunity to

check that the mean and standard deviation of each random variable, as entered in the

filename.dat file, is recaptured. The mean and standard deviation of the cumulative probability

values of each random variable should be 0.5 and 0.289, respectively. This is merely a check to

see if the cumulative probability values are uniformly distributed between 0 and 1. The array of
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random variable values and their respective cumulative probability values arewritten to files.

The random variables are then rearranged with respect to each other in order to obtain the

desired correlation, as entered in thefilename.dat file, or zero correlation if none is entered. This

is performed by a call to corr_control. The whole array of random variable values that will be

used to evaluate the response is passed into this subroutine. The first actions of corr control are

rearranging the correlation values that were input by the user into an array in the proper order of

the random variables as known by the variable rv_def(j)%name, which stores the names of the

random variables. That is, if rv_def(2)%name= 'Kic' and rv_def(3)%name='ai', then the

correlation matrix value corr_desired(3,2) should be the desired correlation between the variables

Kic and ai, as entered by the analyst. The reason this initial rearrangement must be performed is

that a user can enter the desired correlations in any order and the results will be stored in the

variables corr_def%rv(j,k) and corr_def%coef(j), where, if there is correlation between at least

one pair of random variables, the j subscript goes from 1 to the number of correlated pairs and

the k subscript goes from 1 to 2 - for the first and second random variable in the correlated pair.

The process of inducing correlation is easier if the array storing the desired correlation between

the random variables stores them in the same order as the array storing the samples to be

arranged, along the dimension of that sample array whose index implies a certain random

variable.

This desired correlation matrix [C]rxr is then accepted as the rank correlation of the

random variables, [C*]. Cholesky decomposition in corr_control then produces a lower and

upper triangular matrices, [P] and [P'], respectively. A matrix [R]nxr is found such that its rank

correlation matrix is [I], the identity matrix. The length of each column of [R], or rather its size

along the first dimension is the number of response samples to be taken, n. The number of
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columns is the number of random variables, r. It has been suggested by Iman, et. al. (1982) to

use the Van der Waerden scores for [R]. This publication also serves as the basis for the method

the new LHS thread uses to correlate the variables. The first column of matrix JR] are the Van

der Waerden scores for the first random variable, the second column of matrix [R] contains the

scores for the second random variable, up until the last column of [R], which contains the scores

for the last random variable. The Van der Waerden scores are a random placement of the values

• -l[i/(n +1)] for i=1,2,...n; and, this would be done for every random variable, or column of

[R]. The rank correlation of [R] is then approximately [I], the identity matrix. The matrix [R] is

then post multiplied by the upper triangular matrix [P'] and the matrix [R*]=[R][P'] is produced

and its rank correlation matrix [M] is close to [C*], the target rank correlation matrix that was

accepted to be [C], the user-entered correlation matrix. Therefore, if the array containing the

samples of the underlying random variables, [X], is arranged so that its ranked order of each

random variable is identical to the ranked order of JR*], the rank correlation of IX] will also be

[M], which is close to [C*]=[C]. The rank correlation matrix of [X] is then close to that which

the user entered in the filename.dat file. This rearrangement of IX] is the last step in

corr_control, which then passes IX] back to lhs_xsample.

The next step the LHS thread takes in lhs_xsample is to obtain the cumulative probability

of each of the random variable sample points based on their respective distribution type and

entered parameters. This is done with a call to cdfpdf, written by SwRI. The mean and standard

deviation of each random variable sample set in the array of the random variables and the mean

and standard deviation of its cumulative probability array are then calculated and written to files

by calls to calc_stats and write_files, for each array just mentioned. After this the cumulative

probability array is written to a file. The random variable sample array is not yet written to a file
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because some additional information still needs to be written to that file. The lhs_xsample

subroutine then passed control to the lhs_main subroutine, which prints an output header to the

screen and thefilename.out file and then calls lhs_eale to finish the LHS analysis.

The lhs ealc.[90 Subroutine

The only calling argument of lhs_calc is the array of samples of the underlying random

variables that have already been sorted to approach the desired correlation as inputted by a

NESSUS user. The first step performed by this subroutine is the calculate the response for the

system under study based on the values in the array passed in that are the coordinates in the

multidimensional space which the response exists over. The response is calculated with a call to

evaluate_models, written by SwRI. The coordinates and response value are then written to the

appropriate output file and this is repeated for the number of user specified response samples to

be taken. The result is thus a vector of response values, which can be used to estimate the

density of the response. Consequently, these values can also be used to estimate the parameters

of the density.

The mean and standard deviation of the response vector is calculated with a call to

vector stats. These statistics are then written to the console and main output file. The response

vector is then assigned to a temporary variable and sorted from least to greatest in qsort (SwRI).

The percentile, zp, of the system associated with the probability level p is calculated using this

sorted list. The desired probability levels for which an analyst would seek a percentile for are

not entered as probabilities in the filename.dat file. They are entered as standard normal u

values. These u values have an associated cumulative probability of occurring that is obtained

from the cdf of a standard normal variable. Therefore, the first step in calculating the response

percentiles is to obtain these probability values associated with the user entered standard normal
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u values. This is done with a call to cdfnof Now, each probability value, p, is used to calculate

the element of the sorted sample set for which p-percent of the total number of samples taken is

equal to or below this value. If this number is not an integer the number is rounded to the nearest

integer and used to locate the response percentile, or z-value, in the sorted vector that contains all

the response calculations. So, for all probability levels entered in the filename.dat file, the

respective percentile for the system under study is calculated and written to the console and main

output file. The subroutine lhs_eale is exited, control is passed back to lhs_main, and the

program is stopped; thus, concluding the analysis calculations, with all necessary output written

to the respective files.

Latin Hypercube Output

A NESSUS LHS analysis will result in output to several files as well as the standard

output stream - the console, which contain all the information about the problem being solved,

some intermediate information about the samples used to for calculations, as well as the result of

the calculations. For the new LHS sampling technique, the NESSUS program creates a main

output file, and four files that contain LHS sample information, as well as a command line, or

console output.

The main output file for an LHS analysis, filename.out, also gets its name from the input

file, filename.dat, but has a different extension (.out). Portions of a latin hypercube output file

are shown in Figures 33 through 36.
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The output file consists of the following main sections:

. Code Title and License Agreement

2. Input Echo

3. Output Summary

The first section of thefilename.out file consists of the NESSUS title, the code version,

the date that the program was used to produce that output file, license information, and all the

input file main sections encountered when the program does a check to see if there are no

obvious errors in the input file. It is the same as what would be seen in the first part of the

filename.out file in a monte carlo output. This portion of the output file is shown in Figure 33.

NN NN EEEEEEEE SSSSSSS SSSSSSSUU UU SSSSSSS

NNN NN EE SS SS UU UU SS

NNN NN EE SS SS UU UU SS

NNNNN EEEEEE SSSSSS SSSSSS UU UU SSSSSS

NN N NN EE SS SS UU UU SS

NN NNN EE SS SS UU UU SS

NN NN EEEEEEEE SSSSSSS SSSSSSS UUUUUU SSSSSSS

DATE: 12-26-2001 12:22 - LEVEL 3.00(39) - DATED JUL 1, 2000

Build Date: 08/14/01 12:01:21

TH/S IS A PROPRIETARY PROGRAM. IT MAY ONLY HE USED UNDER THE TERMS

OF THE LICENSE AGREEMENT BETWEEN SOUTHWEST RESEARCH INSTITUTE AND THE

CLIENT.

SOUTHWEST RESEARCH INSTITUTE DOES NOT MAKE ANY WARRANTY OR

REPRESENTATION WHATSOEVER, EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTy

OF MERCHANTABILITY OR FITNESS OF ANY PURPOSE W/TH RESPECT TO THE

PROGRAM; OR ASSUMES ANY LIABILITY WHATSOEVER WITH RESPECT TO ANY USE OF

THE PROGRAM OR ANY PORTION THEREOF OR WITH RESPECT TO ANY DAMAGES WHICH

MAY RESULT FROM SUCH USE.

*TITLE SAE TEST CASE 1

*DESCRIPTION

SAE TEST CASE 1 CYCLES TO FAILURE NON-LINEAR, NON-NORMAL 4 RANDOM VARIABLES NO
CORRELATION

*ZFDEFINE

*RVDEFINE

*PADEFINE

*MODELDEFINE

*END NESSUS

End of file reached: checking data..

Figure 33 Header and introduction section of the LHSfilename.out file
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Thenextsectionis an input,orfilename.dat,echo. Becauseof this echo,theuser does

not need to keep the ori_nalfilename.dat file that was used for the appropriate run. The current

monte carlo input echo shows the old input file format; however, the new LHS method will

result in an echo of the new input file format. The input echo section of the LHS output file is

shown in Figures 34 and 35. This input echo is shown in two Figures only because it could not

be shown on a single page.

1

********** INPUT ECHO **********

LINE

1 *NESSUS

2 # Geaerated by NESSUS GUI, version: 2.9.1 (Build 123)

3 # Date generated: Wed Sep 19 11:38:50 GMT+01:00 2001
4

5 *TITLE SAE Test Case 1

6 *DESCR/PTION

7 SAETestCas¢l Cycles to Failure Non-Linear, Non-Normal4randomvariablasNo
8 correlation

9 *END DESCRIPTION

I0

ii #

12 # Problem Statement:

13 # g=(af**temp-ai**temp)/c/( I.1215 *ds)**ParisM/CPi**(ParisM/2.0)

14 # /tcmp

15 # af--l.O/CPi*(Kic/l.1215/ds)**2.0

16 # temp=1.0-ParisM/2.0

17 # CPi=3A 415926535

15 # ParisM=3.0

19

20 #

21 # Z- ftmction defiaitiotts

22 #

23 *ZFDEFINE

24 *MODEL aaalytieal_l

25 # g=(af**temp-ai**terap)/c/( 1.1215 *ds)**ParisM/CPi**(ParisM/2.0)

26 # /recap

27 *TYPE ANALYTICAL

28 CPi ParisM ai c ds temp af

29 *END TYPE

30 *L-WAR/ABLE g

31 *END CVAR1ABLE g

32 *END MODEL analytical 1

33 *MODEL analydcal 2

34 # af= 1.0/CPi*(Kie/ 1. t 215/ds)**2.0

35 *TYPE ANALYTICAL

36 Kie ds CPi

37 *END TYPE

38 *CVARIABLE af

39 *END CVARIABLE af

40 *END MODEL analytical_2

41 *MODEL analytical 3

42 # temp= 1.0-PafisM/2.0

43 *TYPE ANALYTICAL

44 ParisM

45 *END TYPE

46 *CVARIABLE temp

47 *END CVARIABLE temp

48 *END MODEL analytical_3

49 *END ZFDEFINE

50

Figure 34 Input echo section of the LHSfilename.out file
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51 #

52 # V a,riaN¢ definitioa.s and nmppings
53 #

54 *RVDEFINE

58 *DEFINE Kic

59 # Meaa Stdev Type

60 60.0 6.0 Normal

61 *END DEFINE Kic

84 # Random variable correlations

85 #

86 *CORRELATIONS

87 Kic,ai,0.0

93 *END CORRELATIONS

94 tEND RVDEFINE

95

96 #

97 # Probabi_tic analysis settings
98 #

99 *PADEFINE

100 *METHOD LHS # Latin Hylxa'Cube M_hod (LHS)

101 SEED 172.

102 SAMPLES 100

103 MAXTIME 500000

104 XSKIP 1

105 USKIP I

106 EMPCDF

107 HIST(X}RAM 20.0

108 *END METHOD LHS

109 *ANALYSIS TYPE ULEVEL

110 # Vatues are standard norma]

***

117 -1.281728756502709

131 *END ANALYSISTYPE

132 *END PADEFINE

133

134 #

135 # Model defmifiom

136 #

137 *MODELDEFINE

138 *MODEL analytieai 1

139 (aff**temp-ai**temp)/eJ( 1.1215 *ds)**ParisM/CPi**(ParisM/2.0)/t_ap

140 *END MODEL analytical_ 1

141 *MODEL aaalytieal 2

142 1.0/CPi'(Kic/1.1215/ds)* "2.0

143 *END MODEL anslytical_2

144 *MODEL analytical_3

145 1.0-ParlsM/2.0

146 *END MODEL mmlytical 3
147 *END MODELDEFINE

148 *END NESSUS

Figure 35 Input echo section of the LHSfilename.out file continued

The lines of the input file are numbered in the echo and, as one can see from Figures 34

and 35, not all of the input echo is shown. This is only to conserve space. Any line that shows a

# after the line number is a comment in thefilename.dat file. This input echo shows the non-

comment portions of the input file to be an initial title and problem definition section. The next

two sections are the response (z-function) and random variable definition sections. The final two

sections are the probabilistic analysis and model definition sections.
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The final part of the output file is shown Figure 36. This is the part containing an output

summary of the calculations performed during an LHS analysis. The method is written to this

part of the file, along with the number of underlying random variables and number of response

samples calculated. The mean and standard deviation of the values of each random variable used

to evaluate the response is calculated in an LHS analysis along with their errors with respect to

what was inputted by the user. These values are written to thefilename.out file. The next part of

the output summary section are what an analyst would be mainly concerned with. This part

shows the mean and standard deviation of all of the response values calculated. A cdf summary

is also shown. This cdf summary shows the cumulative probability and its respective standard

normal u-value for this cumulative probability and response value at this cumulative probability.

The number of response samples less than or equal to this response value is also written to this

file. There is also a column showing the error at this probability level. This error calculation is

not available for the LHS method of analysis. A row containing all of this cxlf information would

be shown in the output file for all probability levels entered by the user. Some lines of this

section are not shown, but they are only repeats of the same calculations for other underlying

random variables or probability levels.
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1

********** OUTPUT SUMMARY **********

LATIN HYPERCUBE SOLUTION

NUMBER OF VARIABLES 4

NUMBER OF SAMPLES 100

RANDOM VARIABLE STATISTICS

Random Input Input Sample Sample % error % error
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

.............................................................................................

KIC ,600000E+002 .600000E+001 .599831E+002 .604878E+001 .282526E-001 .806490E+000

** Skipped some lines

RESPONSE STATISTICS

Response Response
Mean Std. Dev.

..........................................

0.1728057625E+005 0.8975426443E+004

CDF SUMMARY

Pr(Z<ZO) U ZO #Pts<=ZO Error(*)
.....................................................................................

** Skipped some lines.

0.25010E+000 -.67419E+000 0.10352E+005 25 NA

0.50000E+000 -.10101E-006 0.15884E+005 50 NA

** Skipped some lines

Figure 36 Output summary of the LHSfilename.out file

Another output file that an LHS analysis produces is thefilename.lpr file. The extension

gives an analyst a clue as to the contents of this file. The file contains information about the latin

hypercube cumulative 12robability values that are random, and for each random variable initially

obtained. A portion of the filename.lpr file is shown in Figure 37. For each random variable in

an LHS analysis, n number of cumulative probability values between 0 and 1 are obtained in a

manner such that one value is at a random location within n non-overlapping bins that

completely span the 0 to 1 probability space. These cumulative probability values for all the

random variables are then randomly paired up with one another to form coordinates in

probability space.
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# Latin Hypercube Sampling MatrLx FiJe
# JOBID: *TITLE

# For each row(l:# Sample_ = 100) : Input_Vector(1 :#RVs = 4) GNFS(1 :#GFNS= 3)

# These are RANDOM SAMPLES with SPURIOUS CORRELATION between variables.

# LHS_PROB_SAMPLES :: Randomly sample from each probability bin and randomly pair up coordinates

MEAN of SAMPLE (by columns = random variable)

0.5005148035E+000 0.5001036996E+000 0.4999802384E+000 0.4998676664E+000

STANDARD DEVIATION of SAMPLE (by columns = random variable)

0.2897709240E+000 0.2905316145E+000 0.2897500653E+000 0.2902432264E+000

CORRELATION COEFFICIENT MATRIX (Linear)

0.9900000000E+000

-0.2027871831E+000 0.9900000000E+000

-0.1198529373E+000 0.5176967792E-001 0.9900000000E+000

0.1144922854E+000 0.4847054425E-001 -0.1639291176E+000 0.9900000000E+000

SPEARMAN RANK CORRELATION COEFFICIENT MATRIX

0.1000000000E+001

-0.2038163816E+000 0.1000000000E+001

-0.1201560156E+000 0.5376537654E-001 0.1000000000E+001

0.1162436244E+000 0.511131 l131E-001 -0.1661806181E+000 0.1000000000E+001

***** SAMPLES *****

0.4216206467E+000 0.8582091978E+000 0.6819894556E+000 0.4667808370E+000

0.8552980312E-00t 0.1994025926E+000 0.7593756445E+000 0.6464600554E+000

0.7941528279E+000 0.1465789530E+000 0.3724654824E+000 0.1073635109E+000

** The rest of the file is not shown.

Figure 37 LHSfilename.lpr file that contains p-space LHS random samples

The filename.lpr file contains a brief header and short problem description. A row

containing the mean of the LHS cumulative probability values is then shown, followed by one

showing the standard deviation of the values. It is a requirement from the relative frequency

standpoint of probability that all values in a sample set have an equal probability of occurrence;

thus, it should be seen in drawing samples that the cumulative probability range from 0 to 1 is

uniformly distributed (equal probability) with a mean of 0.5 and a standard deviation of 0.289.

Next, two different correlation matrices are written tofilename.lpr. The first matrix shown is the

correlation coefficient calculated from the random variable sample data. While, this matrix is

not supposed to be equal to any correlation entered by a NESSUS user, it is written to this file

only for the sake of completion. The correlation value, rxr , between two variables, X and Y, can

be calculated from data using Equation 19.
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i=1 ns x S y

In Equation 19, the mean and standard deviation of X is X and Sx, respectively. The

same notation is used for the second random variable, Y. All of the cumulative probability

samples are shown next infilename.lpr. The second matrix to be shown is a ranked correlation

matrix, also known as a Spearman rank correlation matrix. The Spearman correlation coefficient

is calculated using Equation 20.

6 (d_ +d_ +...+d 2) (20)
rSxr =1 n(n 2-1)

The value dj is the difference in ranks of the jth sample of X and Y. That is

dj = rank(Xj)-rank(Yj), for j=l,2,...n. The rank(Xj) would be equal to 1 if Xj is the

smallest in the set of all X's. It would be equal to 2 is only one value in the set of all X's is

smaller than Xj. The logic continues until the rank(X j) would be equal to n if X s is the

largest value in the set of all X's. The same nomenclature and logic is true for Y. Finally, all of

the cumulative probability samples are shown in thefilename.lpr file.

The next file written by NESSUS that is new to the LHS method is thefilename.lxr file.

It has the same format as the filename.lpr file except the cumulative probability values of each

random variable have been transformed to the x-space of that random variable by inverting its

cumulative density function. The pairing of the random variables to form coordinates in

multidimensional space is random; thus, the file contains latin hypercube samples in x-space that

are randomly paired. A portion of the filename.lxr file is shown in Figure 38.
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# Latin Hype_ube Sampling Matrix File

# JOBID: *TITLE

#Foreachrow(l:#S_ples= 100):Input Vector(l:#RVs= 4)GNFS(I:#GFNS= 3)

# These are RANDOM SAMPLES with SPLrRIOUS CORRELATION between variables.

# LHS_X_SAMPLES :: LHS PROB SAMPLES(0,[) thc'a INVERT RESPECTIVE PDF

MEAN of SAMPLE (by cohnnns = random variable)

0.5998305321E+002 0.9957446613E-002 0.1199856350E-009 0.9996446536E+002

STANDARD DEVIATION of SAMPLE (by columns = random variable)

0.6048782811E+001 0.4808179970E-002 0.1202384214E-010 0.9953423045E+001

CORRELATION COEFFICIENT MATRIX (Linear)

0.9900000000E+000

-0.1973590140E+000 0.9900000000E+000

-0A 753209067E+000 0.1927820834E-001 0.9900000000E+000

0,2053832378E+000 0.4079494495E-001 -0.2126879984E+000 0.9900000000E+000

SPEARMAN RANK CORRELATION COEFFICIENT MATRIX

0.1000000000E+001

-0.2038163816E+000 0,1000_0000E+001

-0.1201560156E+000 0.5376537654E-001 0.1000000000E+001

0.1162436244E+000 0.5111311131E-001 -0.166180618 IE+000 0.1000000000E+001

***** SAMPLES *****

0.5881350875E+002 0.1484333982E-001 0.1251766346E-009 0.9867971015E+002

0.5178715646E+002 0.6004077650E-002 0.1280948548E-009 0.1033043708E+003

0.6492549598E+002 0.5443585435E-002 0A 155917271E-009 0.8792079324E+002

** The rest of the samples are not shown.

Figure 38 LHS filename, lxr file that contains x-space LHS random samples

As seen in Figure 38, a header and short problem description is located at the top of

filename.lxr. Rows showing the mean and standard deviations of the sample set of each random

variable are then shown. After this, the lower halves of a correlation matrix and rank correlation

matrix are shown. The last section of this file shows the x-space samples of the underlying

random variables, which are randomly paired up to form coordinates in a multidimensional

space. It is these samples that need to be arranged with respect to each other in order to be

correlated as desired by the NESSUS user. In the NESSUS LHS thread, that was the next step to

be performed and the results were an arranged set of the values in thefilename.lxr file.

The file that contains the latin hypercube x-space samples that are arranged to exhibit

correlation between pairs of the random variables is the filename.lxc file. This file is shown in

Figure 39. This file contains a brief header and problem description. After the header, the mean

and standard deviation of each random variable set is printed. The lower half of the correlation
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matrix andrankcorrelationmatrixarethenshown. Thecorrelationvaluesthatareenteredby a

userareshownabovethe Spearmanrankcorrelationmatrix. Thesevaluesshouldbecompared

with theSpearmanrankcorrelationsbecausetheenteredvalueswereassumedto bethedesired

rankcorrelationamongthevariables.Thenextandfinal partof thefilename.lxc file shows all of

the random variable samples that have already been arranged exhibit a correlation closer to the

desired correlation. These values form coordinates in a multidimensional space in which the

response under consideration exists; therefore, they are used to calculate response values. The

response values

filename.lxc file.

calculated are shown in the final column of the samples section of the

So, in the samples section, each row first shows the coordinates of a

multidimensional space, and the response evaluated at that coordinate of the space.

# Latin Hypereube Sampllag Matrix File

# JOBID: *TITLE

# For each row(l :# Samples = 100) : laput Vector(l :#RVs = 4) GNFS(I :#GFNS= 3)

# These are RANDOM SAMPLES with ADJUSTED CORRELATION between variables,

# LHS_X..SAMPLES :: DECOMPOSE random LHS_X_SAMPLES to yield samples with desired correlation

MEAN of SAMPLE (by columns = random variable)

0.5998305321E+002 0.9957446613E-002 0.1199856350E-009 0.9996446536E+002

STANDARD DEVIATION of SAMPLE (by coltmms =random variable)

0.6048782811E+001 0.4808179970E-002 0.1202384214E-010 0,9953423045E+001

CORRELATION COEFFICIENT MATRIX (Linear)

0.9900000000E+000

-0.2460925957E+000 0.9900000000E+000

0.1271867747E+000 -0,5553565269E-001 0.9900000000E+000

-0.1020203598E+000 -0.3154875326E-001 -0.6401985701E-001 0.9900000000E+000

SPEARMAN RANK CORRELATION COEFFICIENT MATRIX \ DESIRED

0. 1000000000E+001 0.0000000000E+000 0.0000000000E+000 0.0000000_0E+000

-0,2839843984E+000 0.1000000000E+001 0.00000000_E+000 0.0000000000E÷000

0,1240204020E+000 -0,3576357636E-001 0.1000(]00000E+001 0.0000000000E+000

-0.1123912391E+000 -0.6192619262E-001 -0,5056105611E-001 0.1000000000E+001

***** SAMPLES *****

0.6184054255E+002 0.4622058805E-002 0.1350493465E-009 0.9007977956E+002

0,6474329889E+002 0.5551887945E-002 0.137021021 IE-009 0.8034276478E+002

0.7370048225E+002 0.1075698962E-001 0.1115591843E-009 0.9961692948E+002

0.3047257227E+005

0.3925144922E+005

0.1605809668E+005

Figure 39 LHSfilename.lxc file that contains x-space LHS correlated samples

All of the x-space samples given in the filename.lxc file can be transformed to their

respective cumulative probability value based on their distribution. These cumulative probability
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values for the correlated x-space sample set are given in the filename.lpc file. It gets its name

from the fact that it contains latin hypercube cumulative 12robability values whose underlying

random variables have already been _correlated with one another. The partial contents of the file

are shown in Figure 40. There is a brief header and problem description followed by the mean

and standard deviation of the cumulative probability values of each random variable. The mean

and standard deviation should be 0.5 and 0.289, respectively. The correlation coefficient and

rank correlation is shown next. The spearman correlation matrix values should be exactly like

the spearman correlation matrix shown in the filename.lxe file because the cumulative

distribution of each random variable is monotonically increasing. The cumulative probability

values corresponding to the x-space samples in the filename.lxc file are shown next and this is

the last part of thefilename.lpc file. There is one other output that the NESSUS LHS method

will produce. It is output to the screen and it is merely a repeat of information shown in the other

five output files.

# Latin Hypcrcube Sampling Matrix F'de

# JOB[D: *TITLE

#For e_ehrow(l:#Seanplcs= 100):Input Vector(l:#RVs_ 4) GNFS(I:#GFNS= 3)
# These arc RANDOM SAMPLES wkh ADJUSTED CORRELATION between variables.

# LHS PROB SAMPLES :: I.,HS_X_SAMPLE adjusted for correlation and calculate cumulative probability

MEAN of SAMPLE (by columns = random variable)

0.5005149309E+000 0.5001038167E+000 0.4999803626E+000 0,4998677827E+0_

STANDARD DEVIATION of SAMPLE (by columns = r_dom variable)
0,2897709245E+000 0,2905316077E+000 0.2897500814E+000 0.2902432202E+000

CORRELATION COEFFICIENT MATRIX (Linear)

0.9900000000E+000

-0.2818361634E+000 0.990000(1000E+000

0.122278342TE+000 -0.3623551157E-00I 0.9900000000E+000

-0.1108243235E+000 -0.6093321833E-001 -0.5046986477E-001 0.9900000000E+000

SPEARMAN RANK CORRELATION COEFFICIENT MATRIX

0.1000000000E+001

-0.2839843984E+000 0.1000000000E+001

0A240204020E+000 -0,3576357636E-001 0.1000000000E+00!

-0,1123912391E+000 -0.6192619262E-001 -0.5056105611E-001 0.1000000(100E+001

***** SAMPLES *****

0.621M858005E+000 0.8112500821E-001 0.8914555030E+000 0.1592674185E+000

0,7853966958E+000 0.1563639538E+000 0.9161463367E+000 0.1600590842E-001

0.9887970272E+000 0.6519773811E+000 0.2478385493E+000 0.5045476255E+000

Figure 40 LHS filename.lpc file contains the cumulative probability of the correlated LHS
samples
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3.5 TEST CASES

Density parameters can be used to obtain estimates of the reliability of a system. They

must be accurately estimated using as little computational effort (computer time) as possible.

Usually, they density parameters are estimated only once. An often avoided and important

question is: Where will a single estimate of a response density parameter lie with respect to the

exact value of the parameter? This can be answered for specific responses through studies like

this one that attempts to capture the distribution of several estimators as a function of the number

of samples, or response evaluations, and the method used to obtain the coordinate sets of the

domain of the response - Monte Carlo and Latin Hypercube Sampling.

The Society of Automotive Engineers (SAE) has put forth a number of test cases that can

be used to compare different probabilistic or statistical methods. This discussion is limited to 4

test cases with varying number of random variables, distributions, and nonlinearity. They are

labeled test case 1, 4, 6, and 8 only to be consistent with the file names originally given to each

case. For each test case and each method, 900 different files were needed and over 144,000,000

response evaluations were obtained, so organization was top priority. For these test cases the

mean, standard deviation, and 99 th percentile of the response is estimated using Monte Carlo and

Latin Hypercube sampling schemes. The distribution for each estimator and each method was

attempted to be completely captured by repeatedly calculating the respective estimate 100 times.

This, in turn, was performed when the following number of response evaluations were used to

calculate the mean, standard deviation, or 99 th percentile: 100, 300, 1,000, 3,000, 10,000,

30,000, 100,000, 300,000, and 1,000,000. The exact value of the appropriate parameter was

assumed to be the average value of 100 estimations of the respective parameter when 1 million

MC samples were used to calculate the response values used to compute the each parameter

estimate.
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Test Case 1: Stage II Crack Propagation - Paris Law

Response Function and Design Variables

Fracture by fatigue is a common failure mode in metallic structures. A structure will

fatigue when it is subjected to cyclic stresses below the material's yield or ultimate tensile stress.

Fatigue is a time-delayed material fracture due to time varying stresses. It will only occur in the

regions of the material for which at least one of the principal stresses reach a state of tension

during the varying system loading. Fatigue is the result of stochastic loading, i.e. load variations,

on a structure and it is because of this that fatigue fracture can occur in systems that are not

ordinarily considered to be cyclically loaded. This type of failure can be seen in metals and their

alloys, polymers, and ceramics. Observations of metals and polymers has shown that there is a

correlation between the number of cycles that cause failure and the applied cyclic loading, initial

crack sizes, and material properties, among other factors. Between the two material classes,

however, the mechanism of deformation is different due to their microstructural differences.

Ceramics to fracture by fatigue, but, depending on the environment, once a crack is nucleated,

their fatigue life is relatively short when compared to the other two classed of materials. Fatigue

fracture occurs in three stages - crack nucleation, crack propagation, and either overload or final

fast fracture.

Crack nucleation is the first (I) stage of fatigue fracture and occurs due to plastic flow in

flawed areas. These are areas of high stress concentrations and local plastic flow can occur even

under global elastic loading conditions. At some point a crack is considered nucleated and

initially propagates along a crack plane whose normal is not parallel to the loading axis. This

stage is dictated by plasticity not fracture mechanics considerations. The crack continues to

grow and eventually reaches a critical size - a stage II crack forms and the next stage of fatigue
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fracture begins.

The second stage (II) of fatigue fracture is generally dictated by slow crack growth rates.

The relation between crack growth rates and the stress and its range can be predicted with less

error and more confidence than the first stage of crack growth. Also, the direction of the crack

growth is normal to the principal tensile axis during this stage. As the crack propagates, the area

that is not cracked decreases and eventually becomes unable to sustain the same load types. This

is the beginning of the last stage of fatigue fracture.

During the final stage (II1) of fatigue fracture the material can be considered to overload

since the load is now distributed over a smaller local effective area, or quickly fractured because

the material's fracture toughness reduces along with the effective area depending on if you

choose to approach the problem from an elasticity or fracture mechanics point of view and which

type of failure actually occurs.

The first case response measures the number of load cycles to failure for the second stage

of crack growth. The general model is a power law commonly known in the fracture mechanics

discipline as Pads' Law, given by Equation 21.

da _c(Ag)m (21)
dNH

The number of load cycles, Nil , is over the second stage only; hence the subscript. The

Paris Law relates the change in crack size, a, with respect to the change in load cycles during

the second stage, NzI, to a constant, c, that depends on the material and the load stress ratio

(O" min /(_max ), and a empirical constant, m, which is usually between 2 and 7 [Courtney 2000].

This crack growth rate is also a function of a changing material-load state, AK oc Ao _a, which
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is a function proportional to the change in stress during a load cycle and the square root of the

current crack size. This material-load function is a measure of the fracture crack-stress state of

the material. If it is initially less than a threshold value for the system, AK,h, at the beginning of

the stage I cycles, fatigue fracture will not occur since the crack will not propagate. However,

placing a material in this state usually an over design of the system. Therefore, it is usually the

case where a crack will form in stage I and grow to be a stage II crack where the Paris Law

applies. The crack will continue to propagate and so AK will also increase and eventually

approach a materials critical fracture toughness, Ktc. When this happens, the crack growth rate

will increase and stage III of fatigue fracture will begin. This stage soon ends because fast

failure occurs by tensile failure, fatigue crack-advancement, or, for the most part, both modes of

failure.

In order for Equation 21 to be an accurate fit to what is observed experimentally, it is

assumed that there is an initial, or existing crack that is larger than some important

microstructural scale, e.g. a grain size. It is also assumed that the critical crack length at which

stage III fast failure will occur is known. The numerical analysis that leads to the determination

of the number of cycles spent in stage II crack growth begins with the identity da/dN = da/dN,

which is integrated to determine the number of stage II cycles given by

Nil = _, da-/-dN z, (22)

The denominator for this stage is given by the Paris Law, da/dNr, =e(AK)", where

AK = .<lAo _a. The parameter.d is usually crack size, geometry, and load-type dependent, but

an average value of 4, can be used for the purpose of simplifying and completing the analysis.
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Its value is typically close to unity and its value comes from experimental data on test specimens.

It is important to use an expression for AK

situation for the system under consideration.

to the one shown in Figure 41.

that comes from experimental tests that match the

It is assumed that the system under study is similar

F=cr(tw)

ft

X2

4W

X1

X3

Figure 41 Center notched specimen placed in tension (not to scale)

Figure 41 shows the geometry, crack size, crack type, and loading for a specimen that is

similar to situation of a system that might be studied and has a response similar to the one that is

in the process of being derived. The loading and the length of the specimen are both in the x 2
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direction, the specimen width (w) is along the x 1 direction, and specimen's thickness is in the x 3

direction.

The load direction and crack orientation deems the specimen to be in Mode I facture.

The tensile load is normal to the crack surfaces and the crack grows in a direction normal to the

applied load. The crack is considered to be a notch with whose tip is sharper than the notch.

This type of crack tip can be obtained by subjecting the specimen to prestresses or thermal

shocks.

When crack tip region undergoes only elastic deformation, i.e., there is no plastic

deformation, the normal stress in the load direction, a x2, is high near the crack tip and gradually

approaches the nominal value of a no,, = F(tw) in moving in the x I direction. The normal stress

in the x 1 direction, a Xl, is zero at the crack surface because free surfaces cannot support normal

stresses. It rises to a peak value due to a constraint effect between the crack surface and the

material in the xl direction away from the crack. The tensile stress in the x 3direction, ax3, is

zero at the surface, and if the material is thin in this direction (small t), then it might be assumed

that the stress is zero throughout the thickness. Plane stress conditions would be the prevailing

stress state in the region of the crack tip. If the thickness of the specimen is increased, the tensile

stress a x3is still zero at the surface, but will increase progressively into the thickness due to

deformation constraints with the rest of the material. The a x3stress will reach a maximum value

of v (a _1+ a _2) at a critical point, x c, away from the surface and in the x3 direction. The state of

stress transitions from a condition of plane stress to plane strain from the surface up to x_. Thus,

in a thick specimen, a triaxial stress state exists away from the surface and into the thickness.

In many applications for materials that are considered to be more ductile than brittle,

NASA/CR 2002-212008 118



fractureoccursbecausethestressatthecracktip is aregionof highstresses.Thehighstressesin

theregionof thecrackcauseplasticdeformationin thatarea. Thereis thereforea plasticzone

nearthe cracktip that is boundedby the remainingregionof elasticallydeformingmaterial.

Also,plasticdeformationbluntsthecracktip, andbecausethis typeof deformationis irreversible

work expended- thereis no recoveredenergy,it will slow thecrackpropagationprocess.The

larger theregionof plasticdeformation,the slowerthe crackwill grow,andvice-versa.The

plane strainor triaxial stressstatenear a cracktip undergoinglocal plastic deformationis

extremelycomplex;however,it canbesaidthatthis stressstatehasa smallerplasticzonesize

comparedto planestressandthis stateis moreevidentneartheplastic-elasticboundary.Bothof

thesefactorsreducethetoughnessof thematerial. A minimumvalueof thefracturetoughness

will be reachedasconditionsof planestrainprevailoverplanestress.Thisvalueis termedthe

plainstrainfracturetoughness,Kic. The plane strain fracture toughness is usually used in design

because it allows a conservative approach to be taken. Therefore, we assume that the system

under study resembles that shown in Figure 41 and that a plane strain, or triaxial, stress state is

dominant throughout the system [Courtney 2000, Ch.9].

The previously discussed A parameter in AK = AA6 x/-a-acan be found in literature - see

Courtney2000, page429. This book shows that ._=_--_Stan(_]. These experimental

results, or data fits, used in obtaining fracture toughness values have low error for test specimens

whose lengths are 4 times the width and whose total crack lengths are one third of the width,

2a = w/3. Also, plane strain conditions are met when the thickness, t is between 10% and 20%

of the width. For the system whose response is being studied in this section, the total crack

length is roughly half of the width, 2a = w/2.0445. This might not be within the valid region for
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which the parameter _has the closed form solution mentioned and given in Courtney 2000.

However, take into consideration that if 2a = w/2.0445, then the Stage II cycles predicted from

any equation that uses the A = -f_-r__-a tan(_) relationship can either be lower than what

would be observed experimentally (conservative analysis), or higher than an experimental value

obtained from actual tests (non-conservative analysis). An experienced analyst would not be left

in the dark at this point because the total crack length, 2a, is over 45% larger when

2a = w/2.0445 than when 2a = w/3. Since the term AK scales with the square root of the crack

size in its fundamental form M£ = _lA6 _a as well as in the parameter _, where increasing the

crack length increases AK, it can be said that using an increased value for the total crack length

is a conservative approach to the analysis. Increasing zSJ£will increase the rate of crack growth

given bythe Paris Law, da/dN,_ = c(AK)".

Furthermore, if the actual system under consideration is only assumed to be in states of

plane strain, when, in actuality, a significant fraction of the system might be in a state of plane

stress, this would be a conservative assumption on top of the large crack size argument just

mentioned. This would be assuming that the fracture toughness would be at its minimum value -

the plane strain fracture toughness, Kzc. In the numerical analysis, we therefore use a higher

than actual AK value that increases as the crack grows and approaches a lower than actual value

of the material fracture toughness K_c. When this happens the unstable and quick Stage III,

fatigue fracture begins. The numerical analysis will therefore produce lower lifetimes, or load

eyries to failure, than if the aQtual systom under consideration were fatigued to failure.

The parameter A (= 1.1215xf_-) is then used to continue our conservative analysis. If we

substitute the now known expression for AK into Equations 21 and 22, we arrive at the
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following expression for the number of Stage II cycles that occurred resulting in the crack

growing from its initial size, ai, to its final size, a s . Note that by using a constant value of .d

we assume that it will not vary considerably over the crack sizes encountered in stage II crack

growth.

aS

0c .1215A_
(23)

Once Equation 23 is integrated and Nsz is solved for, we arrive at the following response

function under study

a l-m�2 _ l-m/2
f -- Cti )

Z=Nu =N1J c(1.1215At_)m_m/20_m/2)
(24)

The term Z is a generic response variable commonly used in reliability analyses and the

number of cycles to failure, iV:, is set equal to the load cycles the withstood during Stage II

crack growth. Usually, the number of cycles to failure would be the sum of all three stages of

fatigue fracture - that is, iV: = N 1 + Nls + NsH. Therefore, using the equality iV: = N# to

determine the number of cycles to failure implies that we assume that the number of cycles

encountered during Stages I and III of fatigue fracture are negligible when compared to the

amount of cycles spent in Stage II crack growth.

The final crack size is determined by setting AK = Ksc and solving for the crack size, a,

which is then considered to be the final crack size, a I . This is shown in Equation 25.

1/a: = 1.1215Ac_ (25)
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The responsegivenby Equations24 and 5 is a function of several design variables.

Table 5 describes each variable and lists their statistics that are assumed true and used in

estimating the statistics of the response Z = Ny.

Table 5 Design variables for test case I

Variable

Kit

Description

Fracture toughness

Value or D&tribution

N (60,6)

(ksix_

a i Initial crack size LN (0.01,0.005)

(in)

c Pads constant LN (1.2E-10, 1.2E-11)

A(I

m

(-)

(ksi)

(-)

.............Cyclic load

Pads exponent

LN (100,10)

The fracture toughness, AK, is normally distributed with a mean of 60 and standard

deviation of 6, or 10% of the mean. The initial crack size, ai, which is the lower limit in the

integration of the Paris Law fit, is log-normally distributed with a mean and standard deviation of

0.01 and 0.005 - a COV of 50%. The mean and standard deviations for all lognormal variables

in this paper are that of the lognormal distribution not of the underlying normal distribution. The

Paris 'c' constant, is also log-normally distributed whose mean is 1.2E-10 and a COV of 10%.
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This value would be obtained from da/dNI_ vs. AK data, as would the Paris exponent, m, which

has a deterministic value of 3 for this analysis. The cyclic load, Act, is log-normally distributed

with a mean of 100 and 10% COV. These are the variables used to calculated values for the

response of Equations 24 and 25.

Convergence of Sampling Methods

Before we discuss the convergence of the statistics of the response given by Equations 24

and 25 using MC and LHS, let us first introduce a common graphical representation of statistics

of data known as a box and whiskers plot. A box and whiskers plot is shown in Figure 42.

The box and whiskers plot shown in Figure 42 shows the location of all of the data points

as small stars (.), the 25 th, 50 th, and 75 th percentiles, and consequently shows a region where 50%

of the data lies. The length of the box, H, is known as the step and is used to determine other

locations of interest. Another region known as the inner fence has a lower value at 1.5H less

than the 25th percentile and an upper value at 1.5H greater than the 75th percentile. Any data

points that lie outside the inner fence are known as outliers. There is an outer fence that is not

shown in Figure 42 that has its limits at 3H away from the same percentiles as the inner fence.

This plot shows the location of the mean of the data with a large filled-in star (-A-).
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1.5 H

H = Step Size
50% of the data

lies within this

interval.

1.5 H

k

_ Outliers

Standard Normal (assumption)

u

  centime

7_ 50 m percentile25 th percentile

rX

u--27

U = 0.67

U=0

U = -0.67

,. 50oA

U = -2.7

Figure 42 A box and whiskers plot.
The 25 m, 50 th, and 75 th percentiles are indicated by the lower, middle, and upper lines,

respectively. These lines define a box that is the middle 50% of the data. Here, the inner

fence (considered as whiskers) is shown. Anything outside of this fence is considered an
outliers.
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The mean of the test case 1 response was estimated many times using both Monte Carlo

and Latin Hypercube Sampling. The distribution of the mean estimator for each method was

captured by repeatedly calculating the response mean 100 times using a completely different set

of responses for a varying number of samples that ranged from 100 to 1 million. The

distributions for the different mean estimators are shown in Figure 43. A box and whiskers plot

is shown for each method and every sample level that the repeated estimated were performed.

Fifty percent of the data for each distribution lies within the inner box of the box and whiskers

plot. The LHS distributions are shown with an offset in the positive number of samples direction

only for clarity. The mean of each distribution is represented with a filled in star (_'). The

horizontal line is the average value of 100 estimations of the mean when 1 million MC samples

were used to calculate the response values used to compute each mean estimate.

The distributions shown in Figure 43 are apparently normally distributed. Even if the

distributions are shown to have slight skew, it must be reminded that these distributions are not

the exact distributions of the respective mean estimator, they are only estimates of the

distributions obtained by calculating the mean of a number of response evaluations 100 different

times. Observing slight skew in an estimated distribution of means can be neglected and is not

worthy of mentioning because it could be reduced as the distribution of means is more accurately

captured. It is therefore safe to say that both methods have an associated mean distribution that

is apparently normally distributed for all the number of samples used to calculate each mean and

this agrees with Wackerly et. al. (1996) which states that the distribution of the mean estimator is

normal for sample sizes greater than or equal to 30.
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Figure 43 Distributions of means for test case 1 response using MC and LHS

Another measure of the goodness of an estimator is the standard error, or standard

deviation, of the distribution under consideration. Using either MC or LHS samples, the

standard error of the mean estimator distribution decreases as the number of samples, or response

evaluations, used to calculate each mean of the responses increases, as shown in Figure 43. This

statement implies that calculating the mean of the response a repeated number of times will

result in values that are closer to each other when the amount of response values used to

calculate the mean is large. It is important to know this because it implies that the as the effort,

measured in computational time or number of samples used to obtain a single estimate of the

mean increased then all of the possible mean values that can be calculated will be more centered

around each other, or the mean of the respective distribution under consideration. Also, since the
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mean of the respective distributions are approximately equal to the exact value of the mean of the

response, then more confidence can be place in a single estimate lying within a certain range of

the exact value as the number of samples used to calculate this mean is increased. The standard

error of the distribution of means using LHS samples to evaluate the response and calculate each

mean is smaller than the same distribution captured using MC samples when the two

distributions are compared at the same sample level. This is true for all of the sample levels

shown in Figure 43.

Since an analyst typically performs only one set of calculations leading up to a single

estimate of a target value, it would be important for he or she to have confidence that the

estimate, even if it is not close to the true value, be close enough to be within an acceptable error

limit. A statement like this can be made from the information given in Figure 43 using the

middle 50% of the box plots for each distribution. These are the types of statements that allow

one to compare the efficiency of different methods in obtaining estimates of density parameters,

like the mean of a response. When 1,000 Monte Carlo samples are used form the coordinates

utilized to calculate 1,000 response values after which, a mean of those responses can be

calculated, it is 50% likely that the single mean estimate calculated will be within 0.50% of the

target parameter or the true mean - roughly about 95 cycles on either side of the true mean. It

must be noted that the box plot for the Monte Carlo method at the 1000 sample level is not

symmetrical about the true mean, so the actual statement should be that it is 50% likely that a

single estimate will be between 230 cycles below the true mean and 95 cycles above the true

mean. Unfortunately, for the sake of comparison of methods, especially over multiple test cases,

this is too much information and only confuses the main emphasis of each comparison. Also, the

25th and 75th percentile values, which form the limit for the middle 50% of the data, will almost
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never be the same distance from the target parameter. Therefore, it will be easier for the sake of

comparing the MC and LHS sampling methods over the test cases in this work if the range of the

middle 50% box plot will be taken to be + the smaller of the difference between the 25th

percentile and the true value and the difference between the 75th percentile and the true value.

Such a simplification falsely gives the method under consideration better confidence interval

properties; however, this will be done for both methods and all test cases, and surely any unjust

statement will be apparent from Figures similar to Figure 43. Keep in mind that, yes, the goal

here is to quantify confidence in single mean estimates using MC and LHS; in spite of this, we

gladly sacrifice the accuracy of our statements for a more organized effort at making general

statements about the two methods. Using 1000 Latin Hypercube samples to form the coordinates

necessary to calculate 1000 response values and after that the mean of those responses, it is 50%

likely that the single mean estimate calculated will be within 0.20% of the target parameter or the

true mean which is about 33 cycles on either side of the true mean. Therefore, for this test case,

LHS gives an analyst the same confidence that a single mean estimate will have a lower error

than MC. Also, it is important to note that there are three variables to consider when comparing

methods by making confidence statements: (1) effort, number of samples, or response

evaluations, used to make a future estimate, or computational time (2) confidence, measure of

possibility that the future estimate will lie within a certain error or interval from the true value,

and (3) error or interval that a certain confidence is placed in. In order to be able to compare

methods one must set two of the variables equal to each other across the methods and compare

the left over variable. For what was just mentioned, the effort and confidence level were set to

1000 samples and 50%, respectively for both methods. It was then found that LHS had the lower

error of 0.20% from the true mean than the MC error of 0.50%. The same effort and confidence
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was used and it is found that LHS had a lower error than MC.

Another way to compare methods would be to set the error and effort equal across the

two methods and compare the confidence that a future estimate would lie within that error using

a certain amount of effort. This will not be discussed in this paper. On the other hand, the third

and final way to compare methods like MC and LHS is to set the confidence and error equal for

both methods and compare the effort required to obtain the like results. From another

standpoint, this is comparing the effort required to obtain the same distribution of the respective

density parameter estimator - in this case the mean estimator.

The coefficient of variation (COV) of the distribution of the mean estimator will

converge to various values as the effort, or number of samples used to calculate each mean value,

is increased for both of the methods used to obtain response values. The COV [_--a/_t] is the ratio

of a distributions standard deviation to its mean. Since all of the test cases to be discussed in this

work have essentially unbiased mean estimators for all of the sample levels considered and both

methods, the COV is a measure of the variation of repeated mean estimates about the true mean

for a specific number of samples. Figure 44 shows the COV of the mean estimator distribution

for MC and LHS as it varies for all of the sample levels that the repeated mean estimations were

performed for the purpose of capturing the distribution of the mean estimator. This figure shows

the actual calculated COVs as points and a Log-Log linear curve fit line that approximates the

COV of the distribution of the estimator continuously for all number of samples between 100

and 1 million. The curve fit derivation and equations are shown in Appendix IV-D. The

horizontal line at the COV value of 0.005 (0.5%) is shown to emphasize the difference in effort

required to obtain the same variation about the mean of the mean estimator distribution, also the

true mean, for both methods.
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Figure 44 COV of mean distributions for test case 1 response using MC and LHS

1. xlO

From Figure 44 one can see that the rate of convergence to various COV levels is the

same for MC and LHS. This rate of convergence is the slope in Log-Log space, and is the 'm'

exponent in the model of the curve fit, COV = cn". Where 'c' and 'm' are the two constants

that define the curve fit, n is the number of samples, and COV is the coefficient of variation.

These two constants are not the same constants as the ones in Table 5 that are the constants of

the Paris Law of Equation 21. These two curve fits are of the same form, but fit different data

and have different constants associated with each fit. Both methods show a rate of convergence

on the order of-1/2. Furthermore, the mean estimator would have been observed to reach a

COV level of 0.5% at n=10,000 using the MC method while the LHS method needed about 500

samples to converge to the same level. Both distributions are unbiased at those respective

sample levels; therefore, they have the same mean that is approximately equal to the true mean.

Since they have the same COV, they are the same distribution, centered about the true mean of
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the response for test case 1. A COV level of 0.5% implies that the standard error (standard

deviation) of the distribution of the mean estimator is 0.5% of the mean, and 3%. is 1.5% of the

mean. Therefore, if we assume that the mean estimator distribution for MC and LHS is normally

distributed and its mean is the true mean at n=10,000 and n=500, respectively, then we are in the

game for making the desirable confidence statement previously discussed because for a normal

distribution, 99.73% of the data lies within 3c_ of the mean. Both assumptions are

approximately true for both MC and LHS at n=10,000 and 500, respectively. From the

information given in Figure 44, it can be stated with 99.7% confidence that a single mean

estimate for the response of test case 1 will be within +1.5% of the true mean using MC-10,000.

In comparison, there is a 99.7% chance that the same estimate will be within +1.5% of the true

mean using LHS-500. The estimation error of 1.5% is 260 cycles from the mean. The type of

confidence statement just made is of the type - equal confidence and error, different effort. LHS

requires much less computational effort than MC when confidently estimating the mean of the

test case 1 response.

The standard deviation of the test case 1 response, another density parameter, was also

estimated many times using MC and LHS. Like the mean estimator, the standard deviation

estimator, being a function of random variables, is also random, and has a certain distribution the

will vary with the number of response evaluations used to estimate the standard deviation, n, and

the method used to obtain the coordinate sets, MC or LHS. The distribution of the standard

deviation estimator was approximated by repeatedly calculating the standard deviation 100

different times for each method and a varying number of response evaluations. The resulting

distributions are shown in Figure 45. A box and whiskers plot is shown for each distribution, the

LHS is offset only for clarity, and the horizontal line, treated to be the exact standard deviation
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of the test case 1 response, is the mean of 100 estimations of the standard deviation when 1

million MC samples were used to calculate each estimation.
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Figure 45 Distributions of standard deviations for test case 1 response using MC and LHS

Both methods have associated standard deviation distributions that appear normally

distributed for all the number of samples that defines the standard deviation estimator. True,

some of these distributions might show slight skew; however, recall that these distributions are

not the exact distributions of the appropriate standard deviation estimator, they are only estimates

of the standard deviation distribution. In any case, observing slight skew in an estimated

distribution of standard deviations can be neglected and is not worthy of mentioning because the

skew could be reduced as the distribution is more accurately captured, or in a different set of

random circumstances. It is therefore safe to say that both methods have an associated standard

deviation distribution that is apparently normally distributed for all the number of samples used

to calculate each standard deviation and this agrees with the Wackerly et al. (1996) statement
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that the probability distribution of the standard deviation estimator is positively skewed for small

sample sizes, but approximately normal for large sizes (n>25). Also, the distribution of the

standard deviation estimator using both MC and LHS is unbiased and, therefore, centered about

the exact standard deviation value for all the number of samples, or effort levels, shown. This is

in agreement with Wackerly et al (1996).

The standard error of the standard deviation estimator distributions shown in Figure 45

decrease as the number of samples, or response evaluations, used to calculate each standard

deviation of the responses increases. The LHS standard deviation distribution has a lower

standard error than the MC standard deviation distribution for all number of samples shown in

Figure 45.

Confidence statements can be made from the information given in Figure 45 using the

middle 50% of the box plots for each distribution. When 300 MC samples are used form the

coordinates utilized to calculate 300 response values and after that the standard deviation of

those responses is computed, it is 50% likely that the single standard deviation estimate

calculated will be within 4.85% of the target parameter or the true standard deviation. This is

about 435 cycles on either side of the true standard deviation. Using 300 LHS samples to form

the coordinates necessary to calculate 300 response values and then a single standard deviation

estimate, it is 50% likely that the single standard deviation estimate calculated will be within 3%

of the target parameter or the true standard deviation. This is about 265 cycles on either side of

the target. Therefore, for this test case, at the n=300 and 50% effort and confidence levels,

respectively, it was found that LHS had the lower error of 3% from the true standard deviation

than the MC error of 4.85%. The same effort and confidence were used and LHS had a lower

error than MC.
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The COV [-c/i.t] of the standard deviation distribution will be different as the effort, or

number of samples used to calculate each standard deviation value, is increased and for both of

the methods used to obtain response values. The COV is a measure of the variation of repeated

standard deviation estimates about the true standard deviation for a specific number of samples

and method, or rather a specific standard deviation distribution, only because these distributions

are essentially unbiased as discussed when Figure 45 was considered. The COV of the standard

deviation estimator distribution for the Monte Carlo and Latin Hypercube methods as it varies

for all of the sample levels is shown in Figure 46.

From Figure 46 one can see that MC and LHS have the same rate of convergence to

various COV levels. It is on the order of-l/2. The MC standard deviation estimator is shown to

have a COV level of 0.5% using n=50,000 samples for each standard deviation estimate, while

the LHS method needed about 30,000 samples to converge to the same level. Both distributions

are approximately unbiased and normal those respective sample levels; therefore, they have the

same mean that is approximately equal to the true standard deviation of the test case 1 response.

Therefore, they are the same distribution at the levels just mentioned. Therefore, it can be stated

with 99.7% confidence that a single standard deviation estimate for the response of test case 1

will be within +1.5% of the true standard deviation using MC-50,000. 11,.comparison, there is a

99.7% chance that the same estimate will be within +1.5% of the true standard deviation using

LHS-30,000. The estimation error of 1.5% is 134 cycles from the true standard deviation. The

LHS method will estimate the standard deviation of the test case 1 response with equal

confidence and error, but with less effort, or numerical calculations than the MC method. These

statements are based on the best-fit line for the data shown in Figure 46.
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Figure 46 COV of standard deviation distributions for test case 1 response using MC and LHS

The 99 th percentile of the test case 1 response was also estimated many times using MC

and LHS. The percentile estimator is a function of random variables and is therefore random,

has a certain distribution, and will vary with the number of response evaluations used to estimate

the percentile, n, and the method used to obtain coordinate sets, MC or LHS. The corresponding

MC and LHS 99 th percentile distributions are shown below in Figure 47.

The distribution of the 99 th percentile estimator will be different for each method and for

each amount of samples used to obtain each value of the 99 th percentile. This variation is shown

in Figure 47. Both methods have a 99 th percentile distribution that is positively skewed when

100 samples were used to capture the respective distribution. Above this sample level, the

distributions are approximately normally distributed.

The distribution of the 99th percentile estimator using both MC and LHS is apparently

biased with respect to the exact percentile value for the n=100 and 300 sample, or effort levels,
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shown.Thebiasis thedifferencebetweenthemeanof adistributionandthetargetparameter,or

true 99th percentile. Startingat n=l,000 the magnitudeof the bias for both methodswas

calculatedto be under 1,000responseunits (cycles)andlowersthereafter. A bias of 1,000

cyclesimpliesthatthemeanof therespectivedistributionis offby abouta2%errorwith respect

to the true 99th percentile. So, by quantifyingthe bias error we can concludethat the

distributionsarenegligiblybiasedthroughout.However,thequestionremainsasto why the99th

percentiledistributionfor both methodsexhibitssucha bias at thetwo lowestsamplelevels.

Thiscanbeansweredby thinkingabouttheresponseof testcase1. It hasadensitythatcanbe

estimatedby calculatingn samples,or valuesof the response. This density has certain

parameters,like amean,standarddeviation,and99thpercentile,associatedwith it. Thedensity,

andits parameters,canbe approximatedby taking,for example,n=100responseevaluations

usingMC andcalculatingtheir statistics,whichareestimationsof thedensityparameters.The

problemis that like anyrandomvariable,its valueswill becenteredaboutthemean(average

value)andthemode(mostlikely value),sowhenestimatinga densitywith a smallamountof

samples,thedistributionestimationwill first beginto beacceptablearoundthe truemeanand

modevaluesof theresponse.A singlepercentileestimationusinga fewamountof sampleswill

thereforebe closerto themeanandmode,whicharelowervaluesthanlargepercentileslike a

99thpercentileanda highervaluesthansmallpercentileslike a 1.0percentile. It is therefore

likely thatasingleestimationof a99thpercentilewill belessthanthetruevalueof thispercentile

andmultiplevaluesof thisestimatewill becenteredaroundlowervalueswhena smallnumber

of responsesamplesareusedto estimatethispercentile.This explainswhy the 99thpercentile

distributions shown in Figure 47 are negatively biased when few samples were used to estimate

this parameter of the distribution of the response. Therefore, a 99 th percentile distribution, like
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theonesin Figure47, canbeexpectedto beunbiasedsolongasa sufficientnumberof response

evaluations are performed.

The standard error of the 99 th percentile estimator distributions shown in Figure 47

decrease as the number of samples used to calculate each percentile increases, so calculating the

percentile a number of times will result in values that are closer to each other when the amount

of response values used to calculate each percentile is large. The LHS-99 th percentile

distribution has a visibly lower standard error than the MC 99 th percentile distribution for all

number of samples shown in Figure 47.

Approximate confidence statements can be made from Figure 47 using the middle 50%

of the box plots for each distribution. The 50% confidence statements for the 99 thpercentile

distribution of this test case will be made at the n=10,000 sample level for both methods. When

MC-10,000 was used to calculate the 99 thpercentile of the test case 1 response, it is 50% likely

that this single estimate calculated will be within 1% of the target parameter or the true 99 th

percentile. This is about 470 cycles on either side of the target. Using LHS-10,000 is used to

calculate the 99 th percentile, it is 50% likely that the single estimate calculated will be within

0.7% of the target. This is about 340 cycles on either side of the target. Therefore, for this test

case, at the n=10,000 and 50% effort and confidence levels, respectively, it was found that LHS

had the lower error of 0.7% from the true 99 th percentile than the MC error of 1%. The same

effort and confidence were used and LHS had a lower error than MC.
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Figure 47 Distributions of 99 th percentile for test case 1 response using MC and LHS

The COV [_--t_/_t] of the percentile distributions shown in Figure 47 are measures of the

variation of repeated percentile estimates about the mean of the specific 99 th percentile

distribution, or about the true 99 th percentile value once the respective distribution centers around

this true value. The COV of the 99 th percentile distributions using MC and LHS as it varies over

the number of samples used per 99 th percentile calculation is shown in Figure 48. Both methods

show the same-1/2 rate of convergence to lower COV levels. Also, from Figure 48, one can see

that the MC 99 th percentile distribution would reach a COV level of 0.5% using over 100,000

samples used for each percentile estimate, while the LHS method needed about 80,000 samples

to converge to the same level. Both distributions can be considered to be normal and unbiased at

those respective sample levels; therefore, they are the same distribution. A COV level of 0.5%

implies that _a is 1.5% of the mean, which in this case is the true 99 th percentile. Therefore, it

can be stated with 99.7% confidence that a single 99 th percentile estimate for the response of test
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case1will bewithin +1.5% of the target using MC-100,000. In comparison, there is a 99.7%

chance that the same estimate will be within +1.5% of the true 99 th percentile using LHS-80,000.

The range of 1.5% from the true 99 th percentile is any value within 700 cycles from the target -

the true 99 th percentile. The LHS method required 20,000 less samples than the MC method.

Therefore, it is better to estimate the 99 th percentile for the test case 1 response using the LHS

method, because it estimates this percentile with equal confidence and associated error, but with

less effort, or numerical calculations than the MC method. These statements are based on the

best-fit line for the data shown in Figure 48.
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Figure 48 COV of 99 th percentile distributions for test case 1 response using MC and LHS
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Test Case 4: Nonlinear Response, Non-Normal Variables

Response Function and Design Variables

The response for the fourth case is nonlinear in one variable and linear in another.

shown in mathematical form in Equation 26.

Z = X13"5 - 100X 2 + 50 (26)

It is

The design variable statistics are shown in Table 6. One of the design variables is a

uniform distribution whose lower and upper bounds are zero and 100, respectively. The mean of

this distribution is 50 and its standard deviation is about 29. The other random design variable is

exponentially distributed, whose only parameter, 13, is 0.05. This random variable has a mean

of 0.05, which is also the standard deviation. The response given by 26 is purely mathematical

and therefore any measurement on its scale will be discussed in terms of "units of the response".

Table 6 Design variables for test case 4

Variable

S 1

S 2

Description

N/A

N/A

Distribution

U (min=0, max= 100)

=0.05)
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Convergence of Sampling Methods

For the response of test case 4, given by Equation 26, the mean density parameter was

estimated many times using MC and LHS. This estimator is random, and its distribution the will

vary with the number of response evaluations used to estimate the mean, n, and the method used

to obtain the coordinate sets, MC or LHS. This variation in the distribution of means was

captured and is shown in Figure 49. Both methods appear to posses a mean distribution that is

normally distributed for all the number of samples used to calculate each mean shown, that is,

they possess symmetry about the distribution median value and they are therefore unskewed.

The distribution of the mean estimator using both MC and LHS is centered about the exact, or

target, value for all the number of samples used to calculate each mean estimate shown. In other

words, both MC and LHS produce an unbiased mean estimator when they are used to capture its

distribution. This is eye to eye with Wackerly et. al. (1996) which writes that the mean estimator

distribution is unbiased and normal for sample sizes greater than or equal to 30.

Using either MC or LHS samples, the standard error of the distribution of means

decreases as the number of samples, or response evaluations, used to calculate each mean

increases, as shown in Figure 49. Hence, repeated estimates of the mean of the test case 4

response will be closer the exact value of the mean of the response (because the estimators are

unbiased) when a large number of samples are used to calculate each mean estimate. The

standard error of the distribution of means using LHS is much smaller than the same distribution

captured using MC when the two distributions are compared at the same sample level, and for all

of the sample levels shown in Figure 49.
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Confidence statements allow one to compare the efficiency of different methods in

obtaining estimates of density parameters, like the mean of a response, and can be made from the

information given in Figure 49 using the middle 50% of the box plots shown. Using 1,000

Monte Carlo samples to calculate a single mean, it is 50% likely that this single estimate will be

within 2.2% of the target parameter. This error implies a range of about 48,000 response units

on either side of the true mean. Using 1,000 Latin Hypercube samples to calculate a single mean

of the test case 4 response, it is 50% likely that it will be within 0.003% of the true mean, which

is about 65 response units to either side. Therefore, for this test case, LHS gives an analyst the

same confidence that a single mean estimate will have a much lower error than MC.

The COV I---a/u] of the mean estimator distribution using MC and LHS as it varies over a

lmlt_ u£ nmx_plv l_v_l_ tlmt the ivpvtttcd ule_ul e_tiIntttions were performed to capture the

respective distribution of the means is shown in Figure 50. The horizontal line at a COV of

0.002 (0.2%) is shown to emphasize the difference in effort required to obtain the same variation
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about the mean of the distribution, also the true mean, for both methods.

From Figure 50, it is clear that MC and LHS show the different slopes, or rates of

convergence to lower COV levels, in Log-Log space; and, the LHS method is shown to have a

vastly lower COV than the MC method for any given sample level. The slopes are -1/2 and -1

using MC and LHS, respectively. Also, one can see that the mean estimator would have been

observed to reach a COV level of 0.2% at n=400,000 using the MC method while the LHS

method only needed about 100 samples to converge to the same level. Both distributions are

unbiased and normal those respective sample levels. A COV level of 0.2% implies that 3c 0. is

0.6% of the mean. From the information given in Figure 50, it can be stated with 99.7%

confidence that a single mean estimate for the response of test case 4 will be within +0.6% of the

true mean using MC-400,000. In comparison, there is a 99.7% chance that the same type of

estimate will be within +0.6% of the true mean using LHS-100. An estimation error of 0.6% is

13,300 units from the true mean of test case 4. The type of confidence statement just made is of

the type - equal confidence and error, and much, much less effort with LHS samples.
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Figure 50 COV of mean distributions for test case 4 response using MC and LHS

The test case 4 response, given by Equation 26, is random and the standard deviation was

estimated many times using MC and LHS. Even the estimator is random and will vary with the

number of response evaluations used to estimate the standard deviation, n, and the method used

to obtain the coordinate sets, MC or LHS. This variation is shown in Figure 51. Both methods

have associated standard deviation distributions are normally distributed (symmetrical) for all the

number of samples shown. Although the MC standard deviation distribution appears negatively

skewed at the sample level of n=100, it is important to note that this distribution is not the exact.

In a different set of likely circumstances, it could have been approximated differently, changing

and possible lowering the skew of the estimate of the standard deviation. So, observing slight

skew in the estimated distribution of standard deviations can be neglected and is not worthy of

mentioning because the it could be reduced as the distribution of standard deviations is more

accurately captured, or in a different set of random circumstances. Also, the distributions of the
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standard deviation estimator using both MC and LHS are unbiased and, therefore, centered about

the exact standard deviation value for all the number of samples, or effort levels, shown in Figure

51. The standard deviation estimator can be mathematically proven to be unbiased, and Figure

51 supplements those proofs by giving them another experimental verification [Wackerly et al,

1996].

The standard error of the standard deviation estimator distributions shown in Figure 51

tends to decrease as the number of samples used in a single standard deviation estimate

increases. The LHS standard deviation distribution has a much lower standard error than the MC

standard deviation distribution for all number of samples shown in Figure 51.

Using the middle 50% of the box plots shown, some important confidence statements can be

made. When 300 Monte Carlo samples from each underlying random variable are paired with

each other and used to form the coordinates needed to calculate 300 response values and the

standard deviation of those responses is computed, it is 50% likely that a single standard

deviation calculation will be within 2.25% of the target parameter or the true standard deviation.

This error is about 62,000 response units on either side of the true standard deviation. Using 300

Latin Hypercube samples to calculate a single standard deviation of the test case 4 response, it is

50% likely that the single standard deviation estimate calculated will be within 0.13% of the true

standard deviation, which is 3,500 units on either side of the target. Therefore, for this test case,

at the n=300 and 50% effort and confidence levels, respectively, it was found that LHS had the

lower error of 0.13% from the true standard deviation than the MC error of 2.25%. The same

effort and confidence were used and LHS had a lower error than MC.
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Figure 51 Distributions of standard deviations for test case 4 response using MC and LHS

The COVs of the standard deviation estimator distributions shown in Figure 51 are

shown in Figure 52, along with a curve fit that approximates the COV all values between n-=100

and 1 million. The horizontal line at the COV value of 0.002 (0.2%) is shown to highlight the

difference in computations required to obtain the same variation about the mean of the standard

deviation distribution, considered to be the true standard deviation, for both methods.

Essentially, if the respective distributions are unbiased, normal, and have the same COV, then

they are the same distribution as far as the variation about the target parameter is concerned. An

important thing to note from Figure 52 is that the rate of convergence to specific COV levels is

greater for LHS than MC. The LHS method converges on the order of-1 while the MC method

converges with a rate of-0.5.
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From Figure 52, the standard deviation estimator distribution would have been observed

to reach a COV level of 0.2% using MC with n=150,000 samples for each standard deviation

estimate, while the LHS method needed only 100 samples to converge to the same level. Both

distributions are normal and unbiased at those respective sample levels. A COV level of 0.2%

implies that 30_ is 0.6% of the mean, which in this case is the true standard deviation. Therefore,

it can be stated with 99.7% confidence that a single standard deviation estimate for the response

of test case 4 will be within _+0.6% of the true standard deviation using MC-150,000. In

comparison, there is a 99.7% chance that the same estimate will be within _+0.6% of the true

standard deviation using LHS-100. The range of_+0.6% from the true standard deviation implies

any value within 16,500 units from this target. The LHS method will estimate the standard

deviation of the test case 4 response with equal confidence and error, but with far less numerical

calculations than the MC method. Hence, if that desired confidence and error was being sought

after, and each response calculation took 10 minutes, LHS would produce a good result in a little

over 16 hours, while MC would take almost three years to compute the same type of answer.
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Figure 52 COV of standard deviation distributions for test case 4 response using MC and LHS

The 99 th percentile of the response given by Equation 26 was estimated many times for

the purpose of studying its distribution with respect to the number of response values calculated,

n, and the sampling method used - MC or LHS. This variation is shown in Figure 53. The MC

method has a 99 th percentile distribution that is negatively skewed when 100 samples were used

to calculate each percentile in that distribution. Above this sample level, the MC distributions

are approximately normally distributed based on using 100 repetitions to capture the distributions

shown. The LHS 99 th percentile distributions are normally distributed for all of the response

evaluation levels shown.
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The distributions of the 99 th percentile estimator using both MC and LHS are definitely

biased with respect to the exact percentile value for the first few sample levels. These

distributions are biased at the low sample levels because, in short, the test case 4 response

density was estimated by calculating n samples, or values of the response. Estimating a

parameter of the density, like a single percentile estimation, using few samples could lead to

erroneous results because the response data that forms the response density will be closer to the

mean and mode, which is are lower values than large percentiles like a 99 ± percentile and a

higher values for small percentiles like a 1.0 percentile. It is therefore likely that a single

estimation of a 99 th percentile will be less than the true value of this percentile and multiple

values of this estimate will be centered around a lower mean value when few response

evaluations are used to estimate the density which this percentile comes from. That is the reason

why the 99 th percentile distributions shown in Figure 53 are negatively biased when few samples
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were used to estimate this parameter of the distribution of the response. The biases reduce to

nothing as more response evaluations are used to estimate each percentile. Therefore, the 99 th

percentile distribution for the response of test case 4, some of which are shown in Figure 53, can

be considered unbiased so long as a sufficient number of response evaluations are performed.

This allows the tails of the response to be properly estimated. Also, consider the percentile

trying to be estimated - the 99 th percentile, which is the value of the response that 99/100 values

are equal to or below that value. The denominator is 100 and at least 1,000 response evaluations

were necessary to reduce the MC 99 th percentile distribution bias to about 40,000 response units,

which, in this case is about a 0.4% error from the true 99 th percentile. The LHS bias is negligible

(less than 0.4%) at the n=l,000 sample level.

The standard error of the 99 th percentile estimator distributions shown in Figure 53 tends

to decrease as the number of samples used to calculate each percentile increases. The LHS 99 th

percentile distribution has a visibly lower standard error than the MC distribution for all number

of samples shown in Figure 53.

Single estimate confidence when using a specific number of response evaluations to

calculate each estimate is important because it is the probability that this estimate will lie within

a specific error from the target. Using MC-3,000 to calculate 3,000 response values and the 99 th

percentile of those responses, it is 50% likely that the single estimate calculated will be within

0.34% of the target parameter or the true 99 th percentile. This error, or interval, is about 33,000

response units on either side of the target. Using 3,000 LHS samples to form the coordinates

necessary to calculate 3,000 response values that have a certain 99 th percentile, it is 50% likely

th_tt tll_ _111_1_ _:stlIllat_ k;alt,;ul_ltc_l will De wltlnn O.O_-/O orme target, lnlS interval is at)out J,8ot;

response units away from the target. Therefore, for this test case, at the n=3,000 and 50% effort
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and confidence levels, respectively, it was found that LHS had the lower error of 0.04% from the

true 99 th percentile than the MC error of 0.34%. The same effort and confidence were used and,

yet, LHS had a lower error than MC.

The COVs [-cr/_t] of the 99 th percentile distributions of Figure 53 are shown in Figure

54. It must be noted that Figure 54 shows a faster rate of convergence to specific COV levels

using LHS than MC. The LHS method converges on the order of-1 while the MC method

converges with a rate of-0.5. Furthermore, for both methods, the COV decreases as the number

of samples used to calculate each percentile value is increased. The horizontal line at the COV

value of 0.001 (0.1%) is shown to emphasize the difference in effort required to obtain the same

variation about the mean of the 99 th percentile distribution, considered to be the true 99 th

percentile, for both methods on or after the sample level of 1,000.
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Figure 54 COV of 99 th percentile distributions for test case 4 response using MC and LHS
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From Figure 54 it is evident that the MC 99 th percentile distribution reaches a COV level

of 0.1% using over 100,000 samples for each percentile estimate. The LHS method needed only

1,000 samples to converge to the same level of variation. Both distributions can be considered to

be normal and unbiased at those respective sample levels. A COV level of 0.1% implies that 3a 6

is 0.3% of the distribution's mean, which in this case is the true 99 th percentile. So, it can be

stated with 99.7% confidence that a single 99 th percentile estimate for the response of test case 4

will have an estimation error of+0.3% from the target using MC-100,000. In contrast, there is a

99.7% chance that the same estimate will be within +0.3% of the true 99 th percentile using LHS-

1,000. The range of 0.3% from the true 99 th percentile is any value within 29,000 response units

from the target. It is therefore better to estimate the 99 th percentile for the test case 4 response

using the LHS method, because it estimates this percentile with equal confidence and associated

error, but with less effort, or numerical calculations than the MC method. These statements are

based on the best-fit line for the data shown in Figure 54.

Test Case 6: Maximum Radial Stress of Rotating Disk

Response Function and Design Variables

Test case 6 studies a response that is the maximum radial stress of a rotating ring. The

stress is solely due to the inertial forces acting on elements of the ring. An initial model of the

system under mathematical study is shown in Equation 27.

/Eo2 l2Om.x: 8 9.81"39.37 (r°--ri (27)
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The design variables include Poison's ratio, v, the mass density, p, the rotational speed,

e0, and the inner and outer radius, r,.and ro, respectively. The Equation 27 can model a system

so long as certain assumptions are true. One of them is that the outside radius more than 10

times the thickness of the ring. Another is that the thickness is constant and the stresses are

constant over the thickness [Shigley and Mischke, 1989]. If any of these assumptions are not

true for the physical part that is being mathematically modeled, then the actual stresses might be

greater or less than that predicted with Equation 27. If the actual stresses are less than a

prediction using Equation 27, then the mathematical model can be assumed to be conservative,

and the result would be an over design of the ring. The system would still function properly. If

the actual stresses in the ring are greater than what is expected using Equation 27 because the

actual system does not follow one or more of the restrictions of that equation, the result could be

a mechanical failure. If that isn't bad enough, it would surely be accompanied by the

consequences of the failure: loss of money, time, reputation, and even injury. That is, unless

Equation 27 is multiplied by a factor greater than one in order to reduce the modeling error

associated with using Equation 27 with a system that is outside of the boundaries of the

restrictions of that equation. Such is the issue for this test case. Thus, we have that the

mathematical model of the system being studied here is shown in Equations 28 and 29.

Z_-t_ max =

--8J\9.8 P9.37/Ieo 2_ 121 -6-OJ
(P'o -- _" )2 M

(28)
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[ ]'M= 1 2re

ro +ri
(29)

There might be a little doubt that M is indeed greater than 1. It will, so long as

0 < r,. < ro. Once we take a look at what is probable in the design variables we shall see that this

will almost always be the case. The design variables, their description, distribution, and statistics

for the 6th test case are shown in Table 7.

There are five design variables associated with this response. The design variable

statistics are shown in Table 7. The density, p, is normally distributed with a mean of 0.284

lb/in^3 and a 0.7% COV. The inner radius is modeled as a normal random variable with a mean

of 2 inches and a 0.5% COV. The outer radius has a mean of 8 inches, a 0.25% COV, and is

normally distributed. Poisson's ratio was considered to be normally distributed with a mean of

0.30 a 1.67% COV. The only non-normal random variable used in this analysis is the rotor

speed, which was modeled as a uniformly distributed random variable with a range from 10,000

rpm to 11,000 rpm. This type of variable has a mean of 10,500 rpm and a standard deviation of

288 rpm.
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Table 7 Design variables for test case 6

Variable Description Distribution

Density
9 (lb/in^3) N (0.284, 0.002)

Inner radius
r.

t (in) N (2, 0.01)

Outer radius
r

o (in) N (8, 0.02)

Poisson's ratio
V N (0.30, 0.005)

03 Rotorspeed
(rpm) U (min= 10,000, max= 11,000)

Recall the discussion about the multiplication factor and it was questionable if it was

greater than one. Because of the distribution of r_, we can be assured that it over 99.9999%

probable that it will be between 1.95 and 2.05. This range is five standard deviations to either

side of the mean. In the same light, it is also over 99.9999% likely that ro will be between 7.9

and 8.1. Therefore, it is extremely unlikely that the multiplication factor will be less than one.

Convergence of Sampling Methods

For the response of test case 6, given by Equations 28 and 29 the mean was estimated

many times using both MC and LHS. This estimator is random, and its distribution, as repeated

mean estimates are made, will vary with the number of response evaluations used to estimate the

mean, n, and the method used to obtain the coordinate sets used for response evaluations, MC or

LHS. This variation in the distribution of mean estimates is shown in Figure 55.
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Both methods appear to posses a mean distribution that is normally distributed at all of

the sample levels shown. This fact is a supplement to the Wackerly et al. (1996) statement that

mean estimator distribution is normal for sample sizes greater than or equal to 30. Both MC and

LHS produce an unbiased mean distribution when they are used to acquire it. True, they bias of

the distributions shown might not be numerically equal to zero; however, the magnitude of the

bias of all the distributions shown in Figure 55 is slight and they can be considered unbiased.

This is in agreement with Wackerly et al (1996). Also, the slight bias shown might disappear as

the mean distributions are more accurately captured with more than 100 repetitions for each

method and at each level.

The standard errors of the distributions in Figure 55 are shown to decrease as the number

of samples used to calculate each mean increases. For that reason, repeated mean estimates will

be centered about each other, or the mean of the respective distribution, more as the amount of
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response values used to calculate the each mean gets larger. The distributions in are unbiased, so

their mean is approximately equal to the exact value of the mean of the response. The standard

error of the LHS mean distribution is much smaller than the MC mean distribution when the two

distributions are compared at the same sample level. This is true for all of the sample levels

shown in Figure 55.

Confidence statements are important because they are the numerical values that help

evaluate the efficiency of different methods when they are used to obtain density parameter

estimates, like the mean of a response. Using the middle 50% of the box plots shown in Figure

55, it is safe to say that when 1,000 MC samples are used to calculate a single mean estimate, it

is 50% likely that this single estimate will be within 0.08% of the target parameter. This error

implies a range of about 17 response units (psi) on either side of the true mean. Using LHS-

1,000 for a single mean estimate of the test case 6 response, it is 50% likely that it will be within

0.0009% of the target parameter or the true mean which is about 0.2 psi on either side of the true

mean. Therefore, for this test case, LHS gives an analyst the same confidence, or probability,

that a single mean estimate will have a much lower error than MC.

The COV of the mean distributions shown in Figure 55 are shown in Figure 56. The

COV is a measure of the variation of repeated mean estimates about the true mean for a specific

number of samples only when the distribution under consideration is essentially unbiased. In

Figure 56, the horizontal line at a COV of 0.00007 (0.007%) is shown to emphasize the

difference in effort required to obtain the same variation about the mean of the distribution, also

the true mean, for both methods. MC and LHS have the same rate of convergence, in Log-Log

space. The rate of both methods is about -1/2.
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One can see from Figure 56 that the mean estimator would have been observed to reach a

COV level of 0.007% at n=700,000 using the MC method while the LHS method only needed

about 100 samples to converge to the same level. Both distributions are unbiased and normally

distributed at those respective sample levels; therefore, they have the same mean that is

approximately equal to the true mean of the response. Since they have the same COV, they are

the same distribution, centered about the true mean of the response for test case 6. A COV level

of 0.007% implies that the standard error (standard deviation) of the distribution of the estimator

is 0.007% of the mean, or 36_ is 0.021% of the mean. From the information given in Figure 56,

it can be stated with 99.7% confidence that a single mean estimate for the response of test case 6

will be within _+0.021% of the true mean using MC-700,000. In comparison, there is a 99.7%

chance that the same type of estimate will be within _+0.021% of the true mean using LHS-100.

An estimation error of 0.021% implies any value within 4.6 psi from the true mean of the test
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case 6 response. The type of confidence statement just made is of the type - equal confidence

and error, and much less effort with LHS samples.

The test case 6 response, given by Equations 28 and 29 has a standard deviation

associated with it that was estimated a number of times. The distribution of the standard

deviation estimator will vary with the number of response evaluations used to estimate the

standard deviation, n, and the method used to obtain the coordinate sets, MC or LHS. This

variation is shown in Figure 57. Both methods have associated standard deviation distributions

are essentially normally distributed for all the number of samples shown. If that is questionable,

recall that these distributions are not exact. In fact, given a different set of random and likely

circumstances, each distribution could have been approximated differently, changing and

possible lowering any slight skew (or non-normality) that is presented in Figure 57.
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Figure 57 Distributions of standard deviations for test case 6 response using MC and LHS
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The distribution of the standard deviation estimator using both MC and LHS is unbiased

and, therefore, centered about the exact standard deviation value for all the number of samples,

or effort levels, shown in Figure 57. Also, the standard error of the standard deviation estimator

distributions for both methods tends to decrease as the number of response evaluations, used in a

single standard deviation estimate increases. From this one can expect that when repeatedly

calculating the standard deviation of the response of test case 6, the values will be closer to each

other, or the mean of the distribution being formed by these repetitions, when the number of

response values that form a set of data with an associated standard deviation is large - for both

methods. Fortunately, the distributions are unbiased; therefore, their mean is equal to the target

value - the standard deviation of the response. What we then have for both MC and LHS is that

as more samples are used to calculate each standard deviation, the calculated values are more

centered about the mean of the distribution being formed with every standard deviation estimate,

which is also the target of interest. Figure 57 shows that the LHS standard deviation estimator

distribution has a lower standard error than the MC distribution for all number of samples shown.

Knowledge of the confidence that can be place in a single estimate to be within an

acceptable error limit when the estimate is made using a specific number of response evaluations

is extremely important. Actual confidence statements can be made from Figure 57 using the

middle 50% of the box plots shown. When 300 MC samples from each underlying random

variable of test case 6 are paired with each other and used to foma the coordinates needed to

calculate 300 response values, and then, after that, the standard deviation of those responses is

computed, it is 50% likely that a single standard deviation calculation will be within 1.4% of the

target parameter or the true standard deviation. This error is about 17 psi on either side of the

true standard deviation. Using 300 Latin Hypercube samples to calculate a single standard
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deviation of test case 6, it is 50% likely that the single estimate calculated will be within 0.5% of

the target parameter or the true standard deviation, which is 6 units on either side of the target.

Therefore, for this test case, at the n=300 and 50% effort and confidence levels, respectively, it

was found that LHS had the lower error of 0.5% from the true standard deviation than the MC

error of 1.4 %. The same effort and confidence were used and LHS had a lower error than MC.

The COV [--cy/_] of the standard deviation distributions shown in Figure 57 are plotted and fit

to a curve in Figure 58. For this estimator, the COV is a measure of the variation of repeated

standard deviation estimates about the true standard deviation for a specific standard deviation

distribution, only because these distributions are essentially unbiased, as discussed when Figure

57 was considered. The horizontal line at the COV value of 0.005 (0.5%) is shown to draw

attention to the difference in computations required to obtain the same variation about the mean

of the respective standard deviation distribution, essentially the true standard deviation, for both

methods. Basically, two distributions would be identical as far as the variation about the target

parameter is concerned if the respective distributions are unbiased, normal, and have the same

COV. One thing also apparent from Figure 58 is that the rate of convergence to specific COV

levels is the same for MC and LHS. This rate is also the slope of the Log-Log curve fit. Both

methods converge on the order of-0.5.
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Figure 58 COV of standard deviation distributions for test case 6 response using MC and LHS

Furthermore, from Figure 58, the MC standard deviation distribution would have been

observed to reach a COV level of 0.5% using 8,000 samples, while the LHS method needed

1,000 samples to converge to the same level. Both distributions are normal and unbiased at those

respective sample levels. Therefore, it can be stated with 99.7% confidence that a single

standard deviation estimate for the response of test case 6 will be within +1.5% of the true

standard deviation using MC-8,000. In comparison, there is a 99.7% chance that the same

estimate will be within +1.5% of the true standard deviation using LHS-1,000. An error of 1.5%

implies a range of 18.4 psi to either side of the true standard deviation. The LHS method will

estimate the standard deviation of the test case 6 response with equal confidence and error, but

with far less numerical calculations than the MC method. The number of calculations is

indicative of the time it would take to obtain a confident answer. The LHS method will produce

a good result in 1/8 the time it would take MC to compute the same type of answer. These
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statements are based on the best-fit line for the data shown in Figure 58.

The 99 th percentile of the test case 6 response was estimated many times for the purpose

of studying its distribution with respect to the number of response values calculated for each

estimate, n, and the sampling method used - MC or LHS. These variations are shown in Figure

59. The MC method has a positively skewed, and therefore non-normal, 99 th percentile

distribution when n=100 samples were used to calculate each percentile in that distribution.

Linking a skew statement to a normality statement is easy because as the skew of a distribution is

removed it becomes symmetrical about the median value of the distribution, and normally

distributed random variables will exhibit symmetry about the median value of the distribution,

which in that ease is equal to the mean and the mode (most probable). Above this sample level,

the MC-99 th percentile distributions are approximately normally distributed based on using 100

repetitions to capture the distributions shown. The LHS 99 th percentile distributions are

considered normally distributed for all of the response evaluation levels shown in Figure 59.
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The distribution of the 99 th percentile estimator using both MC and LHS appear biased

with respect to the target value for the first few sample levels. The bias is the difference between

the mean of the respective distribution of percentiles and the exact 99 th percentile. Starting at

n=100 the magnitude of the MC and LHS 99 th percentile distributions bias is about 70 psi

maximum and approaches zero after this level. This negative bias can be significant or

negligible depending on the reponse under consideration and what type of error is acceptable. In

any case it represents only a fraction of a percent of error (0.3%) from the true value of the 99 th

percentile. Furthermore, the bias of the MC and LHS 99 th percentile distributions are lower than

this at n=300 and above, which results in an even lower error. For all intensive purposes, the

distributions are considered unbiased for all sample levels shown due to the small error with

respect to the true value.

The standard error of the 99 th percentile estimator distributions shown in Figure 59 tends

to decrease as the number of response evaluations used to calculate each percentile increases.

The LHS distributions have visibly lower standard errors than the MC distributions for all

number of samples shown, except for n=300 and 1,000. While it is not visibly lower, for the

sake of leaving nothing to question, the standard errors of the MC 99 th percentile distribution at

n=300 and n=l,000 were calculated to be 76 and 45 psi, respectively. Furthermore, standard

errors of the LHS 99 th percentile distributions at the n=300 and 1,000 sample levels were

calculated to be 75 and 40 psi, respectively.

Single estimate confidence using a specific number of response evaluations to calculate

each estimate is important. Confidence is a measure of the probability that this estimate will lie

within a specific error from the target. Confidence statements can be made from Figure 59 using

the middle 50% data of the box plots for each distribution. Using MC-3,000 to calculate a single
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99 th percentile estimate, it is 50% likely that the single estimate calculated will be within 0.07%

of the target parameter or the true 99 th percentile. This error, or interval, is about 16 psi on either

side of the target. Using 3,000 LHS samples to calculate a single 99 th percentile estimate, it is

50% likely that the single estimate calculated will be within 0.04% of the target. This interval is

about 9 psi away from the true parameter. Therefore, for this test case, at the n=3,000 and 50%

effort and confidence levels, respectively, it was found that LHS had the lower error of 0.04%

from the true 99 th percentile than the MC error of 0.07%. The same effort and confidence were

used and, yet, LHS had a lower error than MC.

The COV [_--_/rt] of the 99 th percentile distribution will vary across the effort levels and

method used to obtain the response values and this change is shown in Figure 60. For both

methods, the COV decreases as the number of samples used to calculate each percentile value is

increased. The horizontal line at the COV value of 0.002 (0.2%) is shown to emphasize the

difference in effort required to obtain the same variation about the mean of the 99 th percentile

distribution. Because they are unbiased throughout the sample levels, the mean is considered the

true 99 th percentile. It also must be noted that Figure 60 shows both MC and LHS have rates of

convergence to specific COV levels that are equal and on the order of-0.5.
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Figure 60 COV of 99 th percentile distributions for test case 6 response using MC and LHS

From Figure 60, it is evident that the MC 99 th percentile distribution would have been

observed to reach a COV level of 0.2% using about 800 samples for each percentile estimate.

The LHS method would about 600 samples to converge to the same level of variation. Both

distributions can be considered normal and unbiased at those respective sample levels; therefore,

they have the same mean that is approximately equal to the true 99 th percentile of the test case 6

response. For that reason, it can be stated with 99.7% confidence that a single 99 th percentile

estimate for the response of test case 6 will have an estimation error of +0.6% from the target

using MC-800. In contrast, there is a 99.7% chance that the same estimate will be within +0.6%

of the true 99 th percentile using LHS-600. Any value within 145.5 psi from the true 99 th

percentile will be within this estimation error. Indeed, an efficiency difference of 200 samples is

slight. However, this does show that it is therefore better to estimate the 99 th percentile for the

test case 6 response using the LHS method, because it estimates this percentile with equal
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confidenceand associatederror,but with lesseffort, or numerical calculations than the MC

method. These statements are based on the best-fit line for the data shown in Figure 60.

Test Case 8: Nonlinear Response, Standard Normal Variables

Response Function and Design Variables

The response for test case 8 is purely mathematical and is given by Equation 30. Several

statistics of this response will be repeatedly estimate using Monte Carlo and Latin Hypercube

methods. It is dependent on two variables that are considered to be random.

Z = 3 -XI 2 + 2X14 -S 2 (30)

The two design variables' statistics are shown in Table 8. Both of the underlying random

variables are normally distributed with a mean of zero and a standard deviation of one.

Table 8 Design variables for test case 8

Variable

X 1 _ X 2

Description

NA

Distribution

N(O, 1)

Convergence of Sampling Methods

For the response of test case 8, given by Equation 30, one of the density parameters, the

mean, was estimated many times. The mean estimator, being a function of random variables, is

also random, and has a certain distribution that will vary with the number of response evaluations

used to estimate the mean, n, and the method used to obtain the coordinate sets - MC or LHS.

This variation of the mean estimator distribution is shown in Figure 61. Generally speaking,

both methods have an associated mean distribution that is at least mound shaped for all the
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number of samples used to calculate each mean shown. While it would be nice to say that they

are normally distributed throughout all of the levels shown, for n=100 and n=300, and both

methods, there appears to be slight positive skew in those respective distributions. On the other

hand, the magnitude of the mean to median offset, which generally implies a skewed

distribution, is small for these distributions compared to the range of the each distribution. Also,

these distributions are not the exact and only estimates based on 100 repetitions. So, observing

slight skew with respect to the estimated distribution of means, while it is a true observation, it

can be discarded because the skew could be reduced as the distribution of means is more

accurately captured, or even in a different set of random circumstances. It can therefore be said

that both methods have an associated mean distribution that is approximately normally

distributed for all the number of samples used to calculate each mean and this agrees with

Wackerly et al. (1996) which states that the distribution of the mean estimator is normal for

sample sizes greater than or equal to 30.

_Ce Of MOnte Carlo and Latin Hypercube Methods for Test Case 8
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Figure 61 Distributions of means for test case 8 response using MC and LHS
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The distribution of the mean estimator using both MC and LHS is centered about the

exact value for all the number of samples used to calculate each mean estimate shown in Figure

61. That is, both MC and LHS produce unbiased mean estimators when they are used to capture

its distribution.

Examining the standard error, or standard deviation, of the distributions shown in Figure

61 can be another way to measure the goodness of the estimators. For both MC and LHS

samples, the standard error of the standard deviation distributions decrease as the number of

samples, or response evaluations, used to calculate each mean of the responses increases. For the

sake of comparing MC and LHS it must be noted that the standard error of the distribution of

means using LHS samples to evaluate the response and calculated each mean is smaller than the

distribution captured using MC samples when the two distributions are compared at the same

sample level. This is true for all of the sample levels shown in Figure 61.

Usually, only a single estimate of a parameter can be afforded, so it is vital for confidence

to exist for that the estimate, while even if it is not close to the true value, will be within an

acceptable error limit. A quantitative statement like this can be made from the information given

in Figure 61 using the middle 50% of the box plots shown. Using MC-1,000 to form the

coordinates utilized to calculate 1,000 response values and, after that, calculate the mean of those

responses, it is 50% likely that the single mean estimate calculated will be within 4.2% of the

target parameter or the true mean - roughly about 0.34 units on either side of the true mean. In

comparison, using LHS-1,000 to calculate a single mean estimate, it is 50% likely that the

estimate calculated will be within 1.0% of the target parameter or the true mean which is about

0.08 units on either side of the true mean. In summary, the effort and confidence level were set

to 1,000 samples and 50%, respectively for both methods. It was then found that LHS had the
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lower error of 1.0% from the true mean than the MC error of 4.2%. Therefore, for this test case,

LHS gives an analyst the same confidence (probability) that a single mean estimate will have a

lower error than MC, with the same amount of effort.

The COV [-o/_t] of each distribution of the means will change as the effort, or number

of samples used to calculate each mean value, is increased for both of the methods used to obtain

response values. Figure 62 shows the COV of the mean estimator distributions acquired using

MC and LHS. The horizontal line at the COV value of 0.005 (0.5%) is shown to highlight the

difference in effort required to obtain the same variation about the mean of the distribution of

means, also the true mean (they are unbiased at all levels), for both methods. It also must be

noted that the rates of convergence to smaller COV levels for MC and LHS are different. This

rate is the slope of the curve fit line in Log-Log space. The MC method converges on the order

of-l/2, while the LHS method converges on the order of-1.75/2.
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From Figure 62 one can see that the mean estimator would have been observed to reach a

COV level of 0.5% using MC-200,000 while the LHS method needed about 4,000 samples to

converge to the same level. Both distributions can be considered to be normal and unbiased at

those respective sample levels; therefore, they have the same mean that is approximately equal to

the true mean. From the information given in Figure 62, it can be stated with 99.7% confidence

that a single mean estimate for the response of test case 8 will be within +1.5% of the true mean

using MC-200,000. In comparison, there is a 99.7% chance that the same estimate will be within

+1.5% of the true mean using LHS-4,000. The interval of+1.5% is any value within 0.12 units

from the true mean. The type of confidence statement just made is of the type - equal

confidence and error, different effort.

For the response of test case 8, the standard deviation was estimated many times. The

standard deviation estimator will vary with the number of response evaluations used to estimate

the standard deviation, n, and the method used to obtain the coordinate sets, MC or LHS. These

various MC and LHS distributions are shown below in Figure 63. Both methods have an

associated standard deviation distribution that is mound shaped for all the number of samples

shown. Unforttmately, the MC and LHS fro distributions are not normally distributed for their

first sample levels of n=100 and 300. This is deduced from Figure 63 because a normal

distribution will have no skew or asymmetry to it and these respective distributions are definitely

positively skewed. Due to all of the outliers shown outside of the upper inner fence for both

methods even after thc 10,000 3amplc lcvcl it would bc 3afer to acccpt the 3kcw 3hown rather

than expect it to disappear as these distributions would be more accurately captured. In a sense,

this partially agrees with the Wackerly et al. (1996) statement that the probability distribution of
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the standard deviation estimator is positively skewed for small sample sizes, but approximately

normal for large sizes (n>25). For the sake of completion, the MC standard deviation

distribution skew is not visible at n=30,000 and above, and the LHS standard deviation

distribution skew is taken to be gone at n=100,000 and above. These are the levels where they

are accepted as normal. This final skew/normality statement is made based on observing both a

mean-median match up and no outliers for the respective distribution.

Convergence Of Monte Carlo and Latin Hyperc_0e Methods for Test _ 8
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Figure 63 Dislributions of standard deviations for test case 8 response using MC and LHS

The distributions of the standard deviation estimator using both MC and LHS are initially

biased and eventually reach an unbiased state as number of samples used for each standard

deviation estimate increases, as seen from Figure 63. The standard deviation distribution for

either method has a non-zero bias of about 2 response units when n=100 samples are used to

calculate each standard deviation. Numerically, this is a small bias; however, this is a 10% error

with respect to the actual standard deviation. Recall that these distributions are estimates of true
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standard deviation distributions and they could be better approximated if more repetitions were

performed. The biases are considered nil when n > 300 samples are used.

The standard errors of the standard deviation estimator distributions shown in Figure 63

decrease as the number of samples, or response evaluations, used to calculate each standard

deviation of the responses increases. The LHS standard deviation distribution has a lower

standard error than the MC distribution for all number of samples shown in Figure 63.

Confidence that a single estimate, even if it is not close to the true value, will be close enough to

be within an acceptable error limit when the estimate is made using a specific number of

response evaluations is important. Confidence statements can be extracted from Figure 63 using

the middle 50% of the box plots for each distribution. When MC-3,000 will be used to form the

coordinates needed to calculate 3,000 response values and, after that, the standard deviation of

those responses, it is 50% likely that the single standard deviation estimate calculated will be

within 5.5% of the target parameter or the true standard deviation. This is about one response

unit on either side of the true standard deviation. Using 3,000 LHS samples to calculate a single

standard deviation of the test case 8 response, it is 50% likely that the single standard deviation

estimate calculated will be within 3% of the target parameter or the true standard deviation. This

is about 0.55 units on either side of the target. Therefore, for this test case, at the n=3,000 and

50% effort and confidence levels, respectively, it was found that LHS had the lower error of 3%

from the true standard deviation than the MC error of 5.5%. The same effort and confidence

were used and LHS had a lower error than MC.

The COV of the distributions of Figure 63 are shown in Figure 64. The COV is a

measure of the variation of repeated standard deviation estimates about the true standard

deviation for a specific number of samples and method, or rather a specific standard deviation
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distribution, only because these distributions are essentially unbiased when n=300 and above.

The horizontal line at the COV value of 0.01 (1%) is shown to emphasize the difference in effort

required to obtain the same variation about the mean of the standard deviation distribution,

considered the true standard deviation, for both methods.
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Figure 64 COV of standard deviation distributions for test case 8 response using MC and LHS

From Figure 64 one can see that the standard deviation estimator could have been shown

to reach a COV level of 1% using MC with n=600,000 samples for each standard deviation

estimate, while the LHS method needed about 60,000 samples to converge to the same level.

Both distributions are normal and unbiased at those respective sample levels; therefore,

confidence statements are then straightforward because for a normal distribution, 99.73% of the

data lies within _-,. of the mean. It can then be stated with 99.7% confidence that a single

standard deviation estimate for the response of test case 8 will be within +3% of the true standard

deviation using MC-600,000. In comparison, there is a 99.7% chance that the same estimate will
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be within +_3% of the true standard deviation using LHS-60,000. Any value within 0.55 units

from the true standard deviation of the test case 8 response will be within the estimation error of

+3%. The LHS method will estimate the standard deviation of the test case 8 response with

equal confidence and error, but with less effort, or numerical calculations than the MC method.

These statements are based on the best-fit line for the data shown in Figure 64.

The 99 th percentile of the test case 8 response was estimated many times. The percentile

estimator is a function of random variables and is therefore random, has a certain distribution,

and will vary with the number of response evaluations used to estimate the percentile, n, and the

method used to obtain the coordinate sets, MC or LHS. This variation is portrayed in Figure 65.

Both methods have a 99 th percentile distribution that is positively skewed, and hence,

non-normal, when 100 samples were used to capture the respective distribution. At and above

the n=300 sample level, the MC 99 th percentile distributions are approximately unskewed and

normal based on using 100 repetitions to capture the distributions. Normally distributed random

variables will exhibit symmetry about the median value of the distribution, which is equal to the

mean and the mode (most probable). Also, a skewed distribution will tend to be non-normal and

vice-versa. The LHS 99 th percentile distributions are show slight skew when n=300, but the

skew is essentially zero at and above the n=l,000 sample levels, where the distributions can be

considered normal.

The distribution of the 99th percentile estimator for both MC and LHS are biased with

respect to the exact percentile value for the n=100 sample level shown in Figure 65. The bias for

both methods can be considered negligible at and after the n=300 sample levels. Recall that a

single percentile estimation using a few amount of samples will therefore be closer to the mean

and mode, which is are lower values than large percentiles like a 99 th percentile and a higher
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values for small percentiles like a 1.0 percentile. It is therefore likely that a single estimation of

a 99 m percentile will be less than the true value of this percentile and multiple values of this

estimate will be centered around a lower mean value. This explains why the 99 th percentile

distributions shown in Figure 65 are negatively biased at the first sample level. So long as a

sufficient number of response evaluations are performed, the 99 th percentile distribution can be

expected to be unbiased.
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Figure 65 Distributions of 99 thpercentile for test case 8 response using MC and LHS

The standard error of the 99 th percentile estimator distributions shown in Figure 65

decrease as the number of samples, or response evaluations, used to calculate each percentile

increases, so calculating the percentile a number of times will result in values that are closer to

each other when the amount of response values used to calculate each percentile is large. The

LHS distributions have visibly lower standard errors than the MC distributions for all number of

samples shown in Figure 65.
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Confidence that a single estimate made using a specific number of response evaluations

will be close enough to the true value is important. Approximate confidence statements can be

made from Figure 65 using the middle 50% of the box plots for each distribution. If MC-3,000

were used to estimate the 99 th percentile of the test case 8 response, it will be 50% likely that the

single estimate calculated will be within 6.8% of the target parameter or the true 99 th percentile.

This error is about 6 units on either side of the target. Using LHS-3,000 to estimate the 99 th

percentile of the test case 8 response, it is 50% likely that the single estimate calculated will be

within 0.5% of the target. This is about 0.4 units on either side of the target. Therefore, for this

test case, at the n=3,000 and 50% effort and confidence levels, respectively, it was found that

LHS had the lower error of 0.5% from the true 99 th percentile than the MC error of 6.8%. The

same effort and confidence were used and LHS had a lower error than MC.

The COV of the acquired 99 t_ percentile distributions for test case 8 are shown in Figure

66. The COV can be considered to be a measure of the variation of repeated percentile estimates

about the target parameter once the respective 99 m percentile distribution can be considered

unbiased. These distributions under consideration are unbiased at or above the n=300 sample, or

effort levels for both methods as discussed when Figure 65 was discussed. The horizontal line at

the COV value of 0.005 (0.5%) is shown to emphasize the difference in effort required to obtain

the same variation about the mean of the 99 th percentile distribution, considered to be the true

99 th percentile, for both methods on or after the sample level of 300.

From Figure 66 it is evident that the 99 th percentile distribution would have been

observed to reach a COV level of 0.5% using MC-1,000,000 for each percentile estimate, while

the LHS method needed about 20,000 samples to converge to the same level. Both distributions

can be considered to be normal and unbiased at those respective sample levels. Therefore, it can
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be stated with 99.7% confidence that a single 99 th percentile estimate for the response of test case

8 will be within +1.5% of the target using MC-1,000,000. In comparison, there is a 99.7%

chance that the same estimate will be within +1.5% of the true 99 th percentile using LHS-20,000.

The range of 1.5% from the true 99 th percentile is any value within 1.26 units from the target.

The LHS method required 980,000 less samples than the MC method to reach the same level of

confidence and error. Therefore, it is better to estimate the 99 th percentile for the test case 8

response using the LHS method, because it estimates this percentile with equal confidence and

associated error, but with less effort, or numerical calculations than the MC method. These

statements are based on the best-fit line for the data shown in Figure 66.
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Figure 66 COV of 99 th percentile distributions for test case 8 response using MC and LHS
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Results

Three parameters of the density of four responses were repeatedly estimated using MC

and LHS. This was done to study the properties of the distributions of the respective density

parameters. The most important property of such distributions would be the sample level and

method that defines the estimator, a confidence level, and the resulting error in estimation. For

each parameter estimated, two standpoints were taken in making confidence statements. One

was to set the confidence to 50%, and the sample level equal for both methods, and observe the

error in estimation for both methods. The other way was to set the confidence to 99.7% and the

error equal for both methods and to compare the effort required to obtain this characteristic of the

estimator.

MC and LHS were used to estimate the mean of several responses. A summary of these

results is shown in Table 9. For test case 1, it was found that when 1,000 MC samples were used

to estimate the mean, 50% of the estimates were within 0.50% (95 units) from the true mean.

Using LHS-1,000, 50% of the estimates were within 0.20% (33 units) from the true mean. For

test case 4, MC-1,000 had a 50% confidence interval of 2.2% (48,000 units) from the true mean,

while LHS-1,000 had a 50% confidence interval of 0.003% (65 units) from the mean. It was

found that for test case 6, when 1,000 MC samples were used to estimate the mean, 50% of the

estimates were within 0.08% (17 units) from the true mean. Using LHS-1,000, 50% of the

estimates were within 0.0009% (0.2 units) from the true mean. For test case 8, MC-1,000 had a

50% confidence interval of 4.2% (0.34 units) from the true mean, while LHS-1,000 had a 50%

confidence interval of 1.0% (0.08 units) from the mean. Therefore, LHS had a lower error in

mean estimation than MC at the 1,000 m sample level and 50% confidence interval for all of the

four test cases studied.
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Table 9 Estimation errors of the mean at the 50% confidence level using MC and LHS

Test

Case

1

4

6

8

Number of

Samples

1,000

1,000

1,000

1,000

Confidence Level

50%

50%

50%

50%

Estimation Error

Method % units

MC

LHS

MC

LHS

MC

LHS

MC

LHS

0.50

0.20

2.2

0.003

0.08

0.0009

4.2

1.0

95

33

48,000

65

17

0.2

0.34

0.08

On the other hand, since higher confidence is sometimes desired for each estimate of the

mean, the confidence level and estimation error were set to specific values for each test case, and

the number of response calculations necessary to obtain that confidence and error using MC and

LHS was compared. These results are summarized in Table 10. For the test case 1 response,

MC-10,000 was required to be 99.7% confident that a single mean estimate will be within 1.5%

(260 units) from the tree mean. LHS 500 could be used to obtain the same desired single mean

estimate confidence. Over 399,000 more response calculations were necessary to be 99.7%

confident that a single mean estimate of the test case 4 response will be within 0.6% (13,300

units) from the true mean when using MC instead of LHS. For test case 6, it was observed that

MC-700,000 was necessary to be 99.7% confident that a single mean estimate will be within

0.021% (4.6 units) from the true mean. The LHS method required only 100 samples to be

equally confident in the same type of estimate. In addition, LHS required only 4,000 response

evaluations to be 99.7% confident that a single test case 8 mean estimate will be within 1.5%

(0.12 units) from the true mean. MC required about 196,000 more response evaluations in order
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to be equally confident in the same type of estimation. It can be stated that LHS estimates the

mean of the studied responses with fewer calculations necessary to obtain the same confidence

and error than MC.

Table 10 Computations for 99. 7% confidence in mean estimate using MC and LHS
Test

Case

1

4

6

8

Number of

Samples

MC 10,000

LHS 500

MC 400,000

LHS 100

Me 700,000
LHS 100

MC 200,000

LHS 4,000

Confidence Level

99.7%

99.7%

99.7%

99.7%

Estimation Error

%

1.5

0.6

0.021

1.5

units

260

13,300

4.6

0.12

MC and LHS were used to estimate the standard deviation of several responses and the

convergence properties of confident estimation studied. A partial summary of the results is

shown in Table 11. For test case 1, at the n=300 and 50% sample and confidence levels,

respectively, it was found that LHS had the lower error of 3% (265 units) from the true standard

deviation than the MC error of 4.85% (435 units). Furthermore, for test case 4, at the n=300 and

50% sample and confidence levels, respectively, it was found that LHS had the lower error of

0.13% (3,500 units) from the true standard deviation than the MC error of 2.25% (62,000 units).

When estimating the standard deviation of the test case 6 response, it was found that at the n=300

and 50% effort and confidence levels, respectively, LHS had the lower error of 0.5% (6 units)

from the true standard deviation than the MC error of 1.4 % (17 units). LHS had the lower error

of 3% (0.55 units) from the true standard deviation than the MC error of 5.5% (1 unit) when they

were used to estimate the standard deviation of the test case 8 response at the 50% confidence

level, and sample level of 3,000. The LHS method therefore had a lower standard deviation
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estimation error than MC when 50% confidence was to be placed in the estimations and at the

levels shown in Table 11.

Table 11 Estimation errors of the standard deviation at the 50% confidence level using MCand
LHS

Test

Case

4

6

8

Number of

Samples

300

300

300

3,000

Confidence Level

5O%

5O%

50%

5O%

Estimation Error

Method % units

MC

LHS

MC

LHS

MC

4.85

2.25

0.13

1.4

435

265

62,000

3,500

17

LHS 0.5 6

MC 5.5 1

LHS 3 0.55

High confidence standard deviation estimation properties of MC and LHS are equally

important, and some of these characteristics are shown in Table 12. As shown in Table 12, the

confidence level and estimation error were set to specific values for each test case, and the

number of response calculations necessary to obtain that confidence and error using MC and

LHS was compared. For the test case 1 response, MC-50,000 was required to be 99.7%

confident that a single standard deviation estimate will be within 1.5% (134 units) from the true

standard deviation. Using LHS-30,000 the same desired single standard deviation estimate

confidence can be obtained. Over 149,000 more response calculations were necessary to be

99.7% confident that a single standard deviation estimate of the test case 4 response will be

within 0.6% (16,500 units) from the true standard deviation when using MC instead of LHS. For

test case 6, it was observed that MC-8,000 was necessary to be 99.7% confident that a single

_tnndnrd de_vintlon e_timAte will he within 1 qo/_ (1R 4 units) from the tree _tandzrd deviztinn

The LHS method required only 1,000 samples to be equally confident in the same type of

estimate. Furthermore, LHS required 60,000 response evaluations to be 99.7% confident that a
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single test case 8 standard deviation estimate will be within 3.0% (0.55 units) from the true

standard deviation. It was necessary for 600,000 MC calculations to be made in order to obtain

the same type of confidence and error. It can therefore be stated that LHS will estimate the

standard deviation of the studied responses with fewer calculations necessary to obtain the same

confidence and error than MC.

Table 12 Computations for 99. 7% confidence in standard deviation estimate using MC and LHS
Test

Case

1

4

6

Number of Samples

MC

LHS

MC

LHS

I MC
LHS

MC

LHS

50,000

30,000

150,000

100

8,000

1,000

600,000

60,000

Confidence Level Estimation Error

% units

99.7%

99.7%

99.7%

99.7%

The 99 th percentile of a response is also a density parameter.

1.5

0.6

1.5

134

3.0

16,500

18.4

0.55

It represents an important

cutoff point in the range of all possible response values. The response will be observed to be

under this value 99% of the time, and over this value 1% of the time. It was also estimated many

times using MC and LHS over the same four test cases. The estimation errors associated with

the 99 tlapercentile of the test cases studied is shown in Table 13. For test case 1, at the n=10,000

and 50% effort and confidence levels, respectively, it was found that LHS had the lower error of

0.7% (340 units) from the true 99 th percentile than the MC error of 1% (470 units). The 99 th

percentile of the second test case was estimated and it was found that LHS had the lower error of

0.04% (3,800 units) from the true 99 th percentile than the MC error of 0.34% (33,000 units) at
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the 50% confidencelevel and when 3,000 samples were used to estimate each percentile

necessary for this type of study. For the third test case, at the n=3,000 and 50% effort and

confidence levels, respectively, it was found that LHS had the lower 99 th percentile error of

0.04% (9 units) than the MC error of 0.07% (16 units). The fourth test case response 99 th

percentile was estimated and it was found that at the n=3,000 and 50% effort and confidence

levels, respectively, LHS had the lower estimation error of 0.5% (0.4 units) than the MC error of

6.8% (6 units). The LHS method therefore had a lower 99 th percentile estimation error than MC

when 50% confidence was to be placed in the estimations at the levels shown in Table 13.

Table 13 Estimation errors of the 99 thpercentile at the 50% confidence level using MC and LHS

Test

Case

4

6

8

Number of

Samples

10,000

3,000

3,000

3,000

Confidence Level

50%

5O%

5O%

50%

Estimation Error

Method % units

MC

LHS

MC

1.0

0.7

0.34

LHS 0.04
MC 0.07

470

340

33,000

3,800

16

LHS 0.04 9

MC 6.8 6

LHS 0.5 0.4

High confidence placed in 99 th percentile estimates is important. Some confidence

properties of using MC and LHS in estimating the 99 th percentiles of the responses studies are

shown in Table 14. The confidence levels and estimation errors were set to specific values for

each test case, and the number of response calculations necessary to obtain that confidence and

error using MC and LHS was compared. For the test case 1 respoilSe, MC-100,000 was _quhed

to be 99.7% confident that a single 99 th percentile estimate will be within 1.5% (700 units) from

the true 99 th percentile. Using LHS-80,000, the same desired single 99 th percentile estimate

NASA/CR 2002-212008 184



confidencecanbeobtained.For thetest case4 response,it is necessary to make 90,000 more

response calculations to be 99.7% confident that a single 99 th percentile estimate will be within

0.3% (29,000 units) from the true 99 th percentile when using MC instead of LHS. For test case

6, it was observed that MC-800 was necessary to be 99.7% confident that a single 99 th percentile

estimate will be within 0.6% (145.5 units) from the target. The LHS method required only 600

samples to be equally confident in the same type of estimate. Furthermore, LHS required 20,000

response evaluations to be 99.7% confident that a single test case 8 99 th percentile estimate will

be within 1.5% (1.26 units) from the true 99 th percentile. In comparison, MC-1,000,000 was

necessary to obtain the same confidence and estimation error. It can therefore be stated that LHS

will estimate the 99 th percentile of the studied responses with fewer calculations necessary to

obtain the same confidence and error than MC.

Table 14 Computations for 99. 7% confidence in 99thpercentile estimate using MC and LHS

Test Number of Samples Confidence Level Estimation Error
Case

4

6

8

MC

LHS

MC

LHS

% units

100,000

80,000

100,000

1,000

99.7% 1.5

99.7% 0.3

MC 800

LHS 600

MC 106

LHS 20,000

99.7% 0.6

700

29,000

145.5

99.7% 1.5 1.26
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From these results, it can therefore be summarized that the LHS method had a lower

estimation error than MC when they were used to estimate the mean, standard deviation, and the

99 th percentile of the four different stochastic responses studied. In addition, the LHS method

required fewer response calculations than MC in order to be highly confident in estimating the

same density parameter.
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3.6 CONCLUSIONS

Summary

The purpose of this work is to enhance the NESSUS program with the capability to

perform LHS sampling, and to compare the efficiency of LHS to that of MC, which is an

existing method within NESSUS. The density parameters estimated were the mean, standard

deviation, and the 99 th percentile of the response of four different test cases put forth by the

Society of Automotive Engineers for the purpose of comparing different probabilistic methods.

Conclusions

LHS Enhancement

The NESSUS LHS enhancement involved the addition of seven Fortran 90 files to the

existing NESSUS files for the purpose of performing LHS sampling. These files are named

lhs_main.f90, lhs_xsample.f90, talc_statistics.f90, corr_control.f90, lhs_calc.f90, writefiles.f90,

errorfiles.f90. These files contain the following subroutines and functions: lhs_main,

lhs_xsample, raniset, iranu, calc_stats, vectorrank, vectorstats, corr_control, lhs_calc,

write_.files, and error_files. The files have been successfully integrated with the NESSUS

program so that it now has the added capability of performing LHS sampling.

When the Monte Carlo program actions were studied it was discovered that some things

might be improved. That is why some of the features of the NESSUS LHS actions and output

are unique to that method. These features are highlighted in the following list.
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Characteristics of the LHS enhancement

¢" Uses new input file format

¢" Early LHS callout from main NESSUS program

¢" Uses existing NESSUS subroutines

o opening files

o random number generator

o sorting vectors

o pdf, cdf, and their inverses

o evaluating response

¢" Uses derived types in existing module

¢" Echo of new input file format

¢" Does not obtain coefficients for linear expansion of response

¢" Uses one file for writing output and error messages to output files

o globally define desired message and file units

¢" All output in scientific notation -neater output

¢" Adjusts correlation between dependent variables

¢" Two types of correlation printed in output files

o Lower triangle of Pearson's and Spearman rank

o Desired correlation printed as upper triangle above Spearman

The LHS subroutines are dependent on the new input file format used by NESSUS.

Also, it was important for the main LHS file to be called early in the main part of the NESSUS

program because it is a different method, and each method had its own unique actions to take. It

is especially important for the LHS callout to come early so that no files are unnecessarily

opened or written to and so that no variables are changed or declared.

Th_ LH3 mdlm,_wmcnt it not et ntand-alonc modul% it uzcz the NEggUg aubroutinca that

open files, generate random numbers, calculate the pdf, cdf, and their inverses, sort arrays, and

evaluate the response. This is good because testing of the individual subroutines within
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NESSUS, like one that calculates the CDF values, will not need to be performed twice. The

LHS subroutines make use of the derived types already defined in a NESSUS module, created

for the purpose of removing programming techniques such as common blocks. The current LHS

routines will echo the new input file format. A MC analysis will produce an echo of the old

input file format, even when a new input file type is used to run the program.

One thing that the LHS module will not perform, while the MC analysis will, is the

calculation of the coefficients of linear expansion of the response about the mean of all n random

variables. This is an unnecessary set of n+l calculations that is, most importantly, time

consuming.

If there is one thing that separates the actions of the LHS subroutines that do calculations

from the original NESSUS code is that they do not ever write output of error messages to any

files. Two things were discovered about write statements while studying the NESSUS code.

One is that similar write statements are found in different files. This code repetition is somewhat

acceptable, but, again, if changes are made to the output, then all write statements need to be

changed. The second thing is that the write statements get in the way of the actual calculations.

Sorting through another's program is difficult enough and can be made a little easier if we only

see the calculations necessary in the analysis being performed. The LHS subroutines that do

calculations accomplish this no write feature by assigning a short character string to a global

variable along with a vector of integer variables that are file unit numbers. Then it simply calls

the write__filesO or error_filesO subroutines with no arguments, which write output and error

messages, respectively, to the appropriate files. The lines of code that are seen in the LHS

sut_routmes mat do tins are shown Delow.
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mssg%description="lhs_header ''

mssg%files(l:4)=(/file lhs x rdm,file lhs prdm,file lhs x corr, file lhs p_corr/)

call writefiles0

The files of code just shown are consistent in form and are easily seen when sorting

through the LHS subroutines that do calculations. Also, all of the output written to the

appropriate files is in scientifc notation. This produces a neater output because even for

different number magnitudes and signs, all of the decimal numbers will be aligned.

Fortunately, the LHS subroutines will also adjust the correlation to what is desired and

entered by an analyst. Also, the lower half of the Pearson's and Spearman rank correlation

matrices are written to two of the LHS output files. The upper half of the desired correlation

matrix is written above the Spearman rank correlation matrices in the same file because in the

process of rearranging the samples it was assumed that the desired correlation is the Spearman's

rank correlation.

MC and LHS Comparison

Three parameters of the probability density function of four responses were repeatedly

estimated using MC and LHS to study distributions of the respective density parameters. The

most important property of such distributions would be the sample level and method that defines

specific distribution of multiple density parameter estimates, a confidence level (or probability

level), and the resulting error in estimation.

For each parameter estimated, two standpoints were taken in making confidence

statements. One was to set the confidence to 50%, and the sample level equal for both methods,

and observe the error in estimation for both methods. The other way was to set the confidence to

99.7% and the error equal for both methods and to compare the effort required to obtain this

characteristic of the estimator.
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Mean Estimation

Using 1,000 samples, it is 50% likely that a single estimate of the mean of any of the test

ease responses using LHS will have a lower estimation error associated with it compared to MC.

The best LHS performance for this type of estimate was for test case 4, the nonlinear response

with non-normal variables, where the LHS estimation error was 0.003% from the assumed true

mean and the MC error was 2.2%. The most comparable performance of MC was for test case 8,

the nonlinear response with standard normal variables, where the LHS and MC error was 1.0%

and 4.2%, respectively.

Furthermore, it was found that in order to obtain 99.7% confidence for a mean estimation

to be within a specific error, LHS sampling required fewer calculations than MC. The greatest

LHS performance was for the test case 6 response, the maximum radial stress of a rotating disk.

For the mean of that response and for the 99.7% confidence level, LHS required 100 samples to

be within 0.021% of the true mean, while MC required 700,000 samples for the same estimation

error. The most comparable performance of MC was found for the test case 1 response, where

MC required 10,000 samples to be within 1.5% of the true mean, while LHS required only 500.

Standard Deviation Estimation

In estimating the standard deviation of the various responses studied, it is 50% likely that

a single estimate using LHS will have a lower estimation error associated with it compared to

MC, when they are compared using the same amount of samples. The finest LHS performance

was for test case 4, the nonlinear response with non-normal variables. For this test case, using

300 LHS samples, the estimation error was found to be 0.13% from the assumed true standard

deviation and the 300-sample MC error was 2.25%. MC did best for test case 1, the Paris Law

stage to crack propagation response, where the LHS and MC error were 3% and 4.85%,
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respectively, and both used 3,000 samples to achieve this 50% confidence level.

In addition, it was found that in order to be 99.7% confidence that a single standard

deviation estimation to be within a specific error, LHS sampling required fewer calculations than

MC. LHS did best for the test case 8 response, the nonlinear response with standard normal

variables. To be 99.7% confident in a single standard deviation estimate of that response, LHS

required 60,000 samples to be within 3.0% of the true standard deviation, while MC required

600,000 samples for the same estimation error. MC did best for the test case 6 response, the

maximum radial stress of a rotating disk, where MC required 8,000 samples to be within 1.5% of

the true standard deviation, while LHS required only 1,000.

99 th Percentile Estimation

In estimating the 99 th percentile of the various responses studied, it is 50% likely that a

single estimate using LHS will have a lower estimation error associated with it compared to MC,

when they are compared using the same amount of samples. The most excellent LHS

performance was for test case 8, the nonlinear response with standard normal variables. For this

test case, using 3,000 LHS samples, the estimation error was found to be 0.5% from the assumed

true 99 th percentile and the 3,000-sample MC error was 6.8%. MC did best for test case 1, the

Paris Law stage to crack propagation response, where the LHS and MC error were 0.7% and

1.0%, respectively, and both used 10,000 samples to achieve this 50% confidence level.

It was also found that in order to obtain 99.7% confidence for a 99 th percentile estimation

to be within a specific error, LHS sampling required fewer calculations than MC. The finest

LHS performance was for the test case 8 response, the nonlinear response with standard normal

variables. The 99 th percentile of that response can be estimated at the 99.7% confidence level

using 20,000 LHS samples, with an associated estimation error of 1.5% from the true parameter,
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while MC required 1,000,000 samples for the same estimation error. The most comparable

performance of MC was found for the test case 6 response, the maximum radial stress of a

rotating disk, where MC required 800 samples to be within 0.6% of the true mean, while LHS

required only 600.

Generally speaking, a sample should be selected so that a specific quantity of information

is obtained at a minimal cost. For the density parameters estimated and for the test cases studied

LHS sampling has proven to be an efficient sampling method. Furthermore, it has been

successfully added to the existing methods in the NESSUS probabilistic finite element program.
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4.0 ACCOMPLISHMENTS

The goal of this NASA Partnership Award was to advance innovative research and

education objectives in theoretical and computational probabilistic structural analysis,

reliability, and life prediction methods for improved aerospace and aircraft propulsion system

components. This grant resulted in significant accomplishments in research and education,

and the enhancement of UTSA's engineering research environment. It allowed six UTSA

Mechanical Engineering students; Mr. Cody Godines, Mr. Henock Perez, Mr. Edgar Herrera,

Mr. Luis Rangel, Mr. Santiago Navarro and Mr. Ronald Magharing to work directly with the

principal investigator, Dr. Randall Manteufel, providing them with a unique research

experience that, without this grant, would not have been possible.

4.1 Accomplishments: Education

Graduate students and upper-division undergraduate students were introduced to

probabilistic structural analysis methods through two UTSA courses. Two minority graduate

student and four minority undergraduate students were supported by this Partnership Award

and had the opportunity to work directly with the Principal Investigator. The NESSUS

Student User's Manual was revised to include two additional example problems. Solutions

for all example problems were added as well. This manual will provide guidance in using

NESSUS for future courses and help insure the continuation of probabilistic structural

analysis courses at UTSA.
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4.2 Accomplishments: Research

Probabilistic structural analysis, reliability, and life prediction methods are supported

or facilitated by NESSUS, a stochastic finite element program developed by NASA Lewis

Research Center (LeRC) with Southwest Research Institute (SwRI). Mr. Cody Godines, was

supported with this Partnership Award throughout his graduate studies. Mr. Godines has

studied different probabilistic methods for the purpose of improving the capabilities of

NESSUS. This May 2000, he finished his thesis. As part of his thesis work, he enhanced

NESSUS with the capability of performing Latin Hypercube Sampling. Once this objective

was finished he compared LHS with Monte Carlo in their ability to efficiently estimate

parameters of the probability density function of several responses. It was found that LHS

performed better for all of the density parameters estimated and for all test cases studied. Dr.

Manteufel has worked on probabilistic sampling schemes and published a paper entitled

"Evaluating the Convergence of Latin Hypercube Sampling" AIAA-2000-1636 which was

presented in the Non-Deterministic Approaches Forum at the 41 st

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,

in April 3-6, 2000 [Manteufel, 2000]. Former graduate student, Mark Jurena, supported for

his Master's degree on a 1998 Partnership Award, had a paper on his thesis work accepted

for presentation at the Probabilistic Mechanics Conference in July, 2000 [Jurena, Manteufel,

and Bast, 2000].
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4.3 Student Achievements

Mr. Cody Godines, who's thesis topic directly relates to research objectives of this

Partnership Award, has presented his thesis results at the 2001 ASME Region X Graduate

Student Technical Conference in Kingsville, Texas. Mr. Godines and a fellow colleague, Mr.

Rodney Harris, attended the 43 rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics and Materials Conference in April, 2002, where they presented a paper entitled,

"Use Of Probabilistic Methods In Design Of Fluidic Systems". This paper is shown in

Appendix III. Mr. Godines also made a trip to Cleveland, Ohio to present his work at the

Ohio Aerospace Institute Conference in April 2002. This conference was sponsored by

NASA Glenn Research Center and gave students an opportunity to practice their presentation

skills. Mr. Godines will also present his thesis work at the 44 d

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

in April, 2003. He worked from the summer of 2000 until early spring of 2001 at SwRI as an

intern in the Probabilistic Mechanics and Reliability Section of SwRI performing

probabilistic fracture mechanics and NESSUS verification. Under the guidance of Dr.

Manteufel, he has successfully completed his Master's Degree in Mechanical Engineering.

The second graduate student supported on this grant is now working with a local engineering

company and is making plans to come back as a full time student to obtain his M.S.M.E

(Edgar Herrera). Two students supported on this grant have graduated on December 2000

with their Bachelor's Degrees in Mechanical Engineering (Luis Rangel, Santiago Navarro).

Another is on schedule to graduate by December 2003 (Henock Perez).
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APPENDIX I

ME 5543 Probabilistic Engineering Design

Spring 2000

Time and Place:

Office and hours:

Instructor:

Asst. Instructor:

TTH 5:30p-6:45p, EB1.04.06

EB1.04.06, TH 6:45p-8:00p

Ben H. Thacker, PhD, PE, bthacker@swri.org, 522-3896

David S. Riha, driha@swri.org, 522-5221

Callie Bast, cbast@voyagerl.eng.utsa.edu, 458-5588

Course Objective

The objective of the course is to understand the effect of uncertainties in modeling, analysis, and

design of physical systems. Fundamentals in probability and statistics will be covered followed

by an introduction to probabilistic analysis and design methods. A final project is required where

you will apply probabilistic analysis methods to the design of a component of your choice. The

final project will involve an analytical and computer solution, presentation, and final report.

Course Outline

Probability and Statistics

Descriptive Statistics

Probability Theory
Random Variables

Statistical Models

Probabilistic Design
Limit State Function

Probability of Failure
Normal and Lognormal Format

Probabilistic Analysis Methods
Monte Carlo Simulation

Response Surface Method
First-order Second Moment Theory

First-order Reliability Method
Advanced Methods

Advanced Topics

Systems Reliability Formulation

Series and Parallel Systems

Grading

30% Homework

30% Mid-term exam

40% Final project
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Important Dates

Jan 18:

March 9:

March 13-17:

April 3-6:

May 4-5:

First day of class
Mid-term Exam

Spring break, no classes
No classes

Study day, no classes

References

1. Hines, W.H. and Montgomery, D.C., Probability and Statistics in Engineering and

Management Science, Wiley, 1990.

2. Benjamin, J. and Cornell, C.A., Probability, Statistics, and Decision for Civil Engineers,

McGraw-Hill, 1970.

3. Ang, A-H.S. and Tang, W., Probability Concepts in Engineering Planning and Design, Vol.

I: Basic Principals, Wiley, 1975.

4. Ang, A-H.S. and Tang, W., Probability Concepts in Engineering Planning and Design, Vol.

II: Decision, Risk, and Reliability, Wiley, 1975.

5. Madsen, H.O., Krenk, S., and Lind, N.C., Methods of Structural Safety, Prentice-Hall, Inc.,
1986.

6. Kapur, K.C. and Lamberson, L.R., Reliability in Engineering Design, Wiley, 1977.

Final Project

The goal of the final project is to apply probabilistic analysis methods to a practical problem.

You may select the problem from your area of interest. The project needs to meet some basic

requirements:

1. At least 6 random variables.

2. Combination of normal and non-normal random variables.

3. Analysis using Monte Carlo simulation and at least two other advanced methods
learned in class.

Because of these requirements, computer solution will be required. A spreadsheet solution is

acceptable; however, a computer program will most likely be required. You may use the

language of your choice (Fortran, C, etc.)

Your final project will include a written report and a presentation to the class. The presentation

will take the place of the final exam. The written report must include an introduction, problem

formulation, problem statement, solution approach, discussion of results, summary, and

computer listing. More detailed instructions will be handed out following the spring break.
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Monday

14

21

28

ME 5543

Tuesday

PDFFEBRUARYvariables:PDF,1 Rand°mcDF,Joint

8 Statistical Models:
Discrete & Continuous
Distributions

15 Distribution Fitting:
Selecting a Model

22 Probabilistic Design:
Limit State Function

29 Probabilistic Design:
Normal Format

fCeanesaa)

16

23

2000

"f'hurs d'ay

3 Random Variables:

Properties, Moments

10 Statistical Models:

Properties and Use

17 Types of Uncertainties
and Modeling Approaches

24 Probabilistic Design:
Probability of Failure

Friday

11

18

25

APRIL 3

10

17

24

4 First-order Reliability
Method

11 Advanced Mean Value
Method

18 Importance Sampling

25 Systems Reliability:
Series and Parallel Systems

12

19

26

6 First-order Reliability
Method, Advanced Mean
Value Method

13 Probabilistic Sensitivity

Factors, Robust Design
Methodology

20 Multiple Failure Modes:
Systems Reliability
Formulation

27 Computational Issues
for Large Scale Structures

14

21

28
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APPENDIX II

Syllabus
ME 4723:

Reliability and Quality Control in Engineering Design
Summer 2000

SB 2.02.02

Instructor: David Riha (Southwest Research Institute)

Email: driha@swri.org phone: 522-5221

Teaching Assistants: Callie Bast and Mark Jurena

Office Hours: Tuesday and Thursday 8:00-9:00 PM and by appointment

Textbook: E.E. Lewis, Introduction to Reliability Engineering, 2 na Edition

Handouts will be provided for topics not covered in the book.

Course Grade: Homework 25%

Biweekly Quizzes 35 %

Final Design Project 40%

Work is due at the beginning (first ten minutes) of the class period one week after it is

assigned. No late assignments will be accepted unless prior arrangements are made.

Homework should be neat and written on one side of the paper. Assignments must be
stapled and folded with the student's name and assignment number on the outside.

Course Description:

* Introduction to statistical methods in reliability and probabilistic engineering
design

• Statistical quality control and inspection

• Life prediction and testing

• Design optimization

Course Organization:

Probability Theory (Chapters 1-3)

Reliability (Chapters 6-7, 9)

Reliability Testing and Data Analysis (Chapters 5, 8)

Probabilistic Design (Chapter 4 + other sources)

Prerequisites: Senior level standing in Engineering

Software: The NESSUS probabilistic analysis software will be used in this class

ABET Notebook:

Each student is required to maintain a notebook of all graded material. This notebook

must be turned in with the final design report. Two of three notebooks will be retained

for ABET accreditation review. All other notebooks will be available after final grades

are posted.
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PROBABILISTIC REDESIGN OF A HIGH PRESSURE VESSEL BY WAY OF

REDUCING THE PROBABILITY OF YIELDING WHILE INCLUDING

STRENGTH DEGREDATION EFFECTS

Cody Godines

University of Texas at San Antonio

6900 N. Loop 1604 West

San Antonio, Tx. 78249

Key Words: Probabilistic Design, Probabilistic Sensitivity, Pressure Vessel, Reliability,

and Failure

ABSTRACT

It is becoming increasingly important to be able to quantify the reliability of

engineering structures that have randomness in loading, material properties, and

geometric properties. Probabilistic analysis provides a means to do this. Two well-

known methods ofprobabilistic analysis are simple Monte Carlo and First Order

Reliability Method. In order for probabilistic methods to be more widely accepted, they

need to be proven to be more useful than conventional deterministic designs. This paper

deals with the redesign of a high-pressure vessel. Strength degradation and fatigue

effects were taken into account. A total of six design variables were stochastic. Using

two probabilistic methods, the probability of failure of the system was reduced.
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INTRODUCTION

Pressure vessels are closed structures that contain a fluid at under pressure and are

used in a wide variety of situations in today's society. Self-Contained Underwater

Breathing Apparatus (SCUBA) tanks, fire extinguishers, propane storage tanks are

examples of the many uses of pressure vessels. This paper will discuss the analysis and

redesign of a 100 cubic-foot, high-pressure steel SCUBA tank.

In analyzing a SCUBA tank it is ideal to ensure that failure will not occur in such

a manner that hinders the performance of the system or endangers the safety of people.

The Texas Department of Transportation (TDOT) has set the standards of the American

Society of Mechanical Engineers (ASME) pressure vessel code to be met by all SCUBA

tanks. Every five years, SCUBA tanks must be hydro-statically tested to 5/3 their

working pressure. They fail if they permanently deform more than 10 percent of their

original volume. The probability of failing this test for an existing SCUBA tank system

will be determined by using a probabilistic method to analyze the tank and account for

the uncertainty in the system and test procedure.

Probabilistic analysis is an important tool in the design and analysis of today's

structures. It gives the engineer the ability to compute the reliability of the system

without the expensive cost of laboratory simulation, whose data is of no use for new

designs. Probabilistic methods also allow for the quantification of the uncertainties

inherent in the structure as well as those involved in a measurement technique.

The probabilistic analysis of the SCUBA tank will be performed using QUEST, a

Fortran 90 code that was developed as during a class taken during his quest for his

Masters of Science in Mechanical Engineering degree. The code has two main methods
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ofprobabilistic analysis. The First Order Reliability Method (FORM) was developed by

many people but known to the engineering community as the Hasofer-Lind and

Rackowitz-Feissler algorithm/method. This will be the main tool used in the analysis of

the SCUBA tank. The results of the FORM solution will be checked using the simple

Monte Carlo technique, which is the second method of the code.

The probabilistic analysis in this report will determine which input parameters

most influence the response of the SCUBA tank and how to change the system

uncertainty in order to reduce the probability of failure. A new design will be realized

and a new probabilistic analysis will be performed in order to make sure that the

probability of failure was reduced. Conclusions will then be drawn.

The System

The system analyzed was a 100 cubic foot, high-pressure steel SCUBA tank.

Pressed Steel Tank Company in Milwaukee, WI manufactures it. Its design pressure is

3500 psi. The geometry of the tank will be simplified to that shown in Figure 1.

Figure 1. Simplifies SCUBA system to be analyzed and redesigned.

The coordinate system used is a radial ®, axial (z), and tangential (0) system. Where a

and b are the inner and outer radii, respectively. The internal pressure is designated by p.

The ends of the tank are assumed to be hemispherical. The true system has a somewhat
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hemispherical end where the nozzles of the tank are supposed to be. The other end of a

real tank is ellipsoidal "to the one", which designates the ratio of the major to the minor

axis. The material used in the analysis was AIS14130 steel. This is a medium carbon

and low alloy chromium-molybendum steel. It is tempered at 1100 °F and water

quenched to give if more desirable properties [7]. From the coil, Pressed Steel uses a

punch-die combination to produce a seamless pressure vessel so that joint efficiency (of

welding) is of no concern.

System Failure

The ASME has set standards that certain mechanical components must meet in

order to perform its function(s) safely. These standards can be found in the codes of the

AMSE, which are volumes long. One set of these standards regards pressure vessel

failure testing. Pressure vessels shall be hydro-statically tested every 5 years to

determine if they are fit to resume operation. Here are some of the guidelines of the

failure test:

1. Pressure vessels that are hydro-statically tested shall be filled with water to a test

pressure.

2. The test pressure shall by be determined by the following formula:

tp = 1.5 (Stp / Sdt) dp Eq.1 where,

tp is the test pressure, Stp is the allowable stress at the test temperature,

Sdt is the allowable stress at the design temperature, and dp is the design pressure.

3. The test temperature must be between 60°F and room temperature.
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4. The vessel shall be blocked to permit examination during testing. Examination

should occur at a pressure greater than 2/3 but less than 9/10 of the test pressure.

5. There is no upper limit to the test pressure. However, if the vessel is visibly

distorted, the inspector may reject the vessel.

The TDOT clarified some of the vague rules of the ASME code when the vessels

are SCUBA tanks. They enforce that SCUBA tanks are considered to fail the hydrostatic

test if they permanently deform more than 10% of the original volume [3]. In testing

SCUBA tanks, it is usual to place the tank in a shallow, sealed pool of water. The

original volume is recorded by noting the volume of water displaced. The tank is then

filled with water, a moment is waited, the water is released and the new volume is then

recorded. Tank rejection is then only a matter of division.

System Failure, Probability of Failure, and the Limit State

When analyzing a structure, one must be aware of the ways that the system can

fail. A system fails when it can no longer perform its function properly and/or safely.

When will the SCUBA tank fail? ASME and TDOT have already answered that. The

SCUBA tank in consideration will fail if, upon testing and examination, it permanently

deforms more than 10% of its original volume. Due to the complexity of the literature

available on the plastic volumetric expansion, it will be the scope of this work to consider

failure to happen when the tank reaches the point of yielding during testing.

The probability of failure is the probability that the system failure will occur. For

this system it is the probability that the test pressure reached will exceed that which

causes yielding. In mathematical form, the probability of system failure is given by
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Pf = P(P >- Pc) = P(Pe --P= O) = P(g(:_) -- 0) Eq.2

where, PI is the probability of tank failure, P0 is the probability that the event in 0 will

occur, p is the test pressure, pe is the pressure that will cause the tank to begin yielding,

and g(2) is defined as the limit state of the problem. The limit-state is a function of

design variables that breaks the probability space into safe and fail regions.

Deterministic System Analysis

For the SCUBA tank under consideration and the limit-state previously

mentioned, the internal pressure that will cause the tank to yield according to the Von

Misses criterion is given by

aZ,lPe = k 1- _'E) Eq.3

The new term, k, is the material shear yield stress. The same result would have been

obtained ifTresca's yield criterion had been used. The assumptions of Eq.3 are than

plane cross sections remain plane, stresses and strains far from ends do not vary along the

length of the vessel, and the material is linear elastic. Yielding of the tank begins at the

inner wall (r=a) [6].

The yield stress in shear is related to the tensile yield strength by

k = 0.577Sy Eq.4

The tensile yield strength is designated by Sy. Equation 4 comes directly from the Von

Misses failure criteria prediction [1].

Now, let us reflect. Why would a tank that is designed to initially pass the

hydrostatic test ever have the possibility of failing the test 5+ years later? What has
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happened to the tank during its life? One source that causes the strength of the tank to

degrade is fatigue. A 100 cu.ft, tank (3500psi, 238atm) has enough air to last 90

minutes. The pressure in the tank is then totally relieved; it then must be refilled for the

diver to use it again. If a diver uses/refills the tank twice every week for 5 years, that

results in a total of 520 cycles. After another 5 years, that would be 1040 cycles. That is

already in the high cycle zone (above 10^3) on the S-N curve for that material. This

fatigue reduces the ultimate tensile strength of the material. However, we are searching

for the reason that the tensile yield strength, Sy, degrades due to cyclic loading. It has

been proven that "the elastic limits of iron and steel can be changed...by cyclic variation

of stress" [ 1]. Let us proceed to relate the lowering of the ultimate tensile strength, So,, to

the lowering of the tensile yield strength, Sy.

There exists a minimum value of S,t found by ASTM, it is given by the equation

S,,_ = 0.45H B Eq.5

The Brinnell hardness number is designated by H B [ 1]. To relate the Brinnell hardness

number to the tensile yield strength, a linear curve fit was done on data for tempered and

water quenched AIS14130 steels, for tempering temperatures between 400-1200°F [7].

The linear relation was calculated to be

H B = 2.25Sy Eq.6

Combining equations 5 and 6 results in the following equation

S,,tm_ = 0.45(2.25)Sy Eq.7

Substituting this into equation 4, the equation for the shear yield stress then becomes

0.577
k = Sutmi n Eq.8

0.45(2.25)
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If the average value of the yield strength in tension obtained from Pressed Steel (150 ksi),

the minimum ultimate tensile strength then becomes 151.875 ksi (Eq.7). From Pressed

Steel, the range of values of the yield strength between plus and minus 3 standard

deviations from the mean was 25 ksi. In order to continue the analysis, it was assumed

that the range of values for the ultimate tensile strength, S,t, between plus and minus 3

standard deviations from the mean was 50 ksi. To be conservative, let the minimum

value in equation 8 be the design variableS,t, whose mean value obtained from equation

4 is 86.55 ksi. Since S,t is most likely normally distributed [1], this turns the minimum

value in equation 8 into a random variable in which almost all of the values fall below

151.875 ksi. The standard deviation is 8.33 ksi. Equation 8 then becomes

0.577

k = Ss 0.45(2.25) Eq.9

Recall that the ultimate tensile strength is being lowered by fatigue. In equation 9, S I is

the ultimate tensile strength at a certain number of cycles. At a half cycle, it will equal

S,t (the beginning of the S-N curve). It is calculated from

1. (ogs,)

SI = (0.9S,,y NI'_°='°("'_")
Se Eq.10

The number of cycles the tank has undergone is designated by N; and S e is the

limit of the ultimate tensile strength of the material when subjected to a large amount of

cycles (lower limit of Sy) [ 1]. The endurance limit is given by the following equations

S e =kakbkckdkeS_ Eq.11
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In equation 11, S" is the endurance limit of the test specimen (not machine part), k a is the

surface factor, k b is the size factor, k c is the load factor, k a is the temperature factor, and

k e is the miscellaneous factor (k b =k a =k e =1)[1]. Once equations 2,3,9,10, and 11 are

combined the limit-state for this problem can be expressed as

r 1 (0.9Sut)q

g(x)-- (0.9S,,, y iV[-_L°g'°k_Jj 0.56987(1- a2)
kakc S, "ffi) - P Eq.12

Design Variables

Of the parameters given by equation 12, the deterministic design variables are the

number of cycles during a 5 year period of the SCUBA tanks use, N, and the endurance

limit of a test specimen of the material, S'. The stochastic design variables are the

ultimate tensile strength of the material after 1/2 cycle, Su,, the surface factor,/ca, the load

factor, ke, the inner radius, a, the outer radius, b, and the internal testing pressure, p. The

design variable definitions are given in Table 1.

Table 1. Design Variable Def'mitions.

Design

Variable

Description Mean Standard

Deviation

Distribution

N Cycles 1040 0

Se' Endurance Limit 63.945 0

S,t Ultimate T. 86.55 8.3333 Normal

Strength

k a Surface Factor 0.74812 4.49E-02 Lognormal

kc Load Factor 0.5770 0.06347 Normal
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A

B

P

InnerRadius

OuterRadius

InternalPressure

6.875

7.25

5.833

2.33E-03

2.33E-03

4.86E-03

Normal

Normal

Normal

Mostvaluesin thetablecomefromShigley[1] or Pressed Steel. Units are in inches and

kilo-pounds. The only assumptions made are that a, b, and, p are normally distributed.

Results

Table 2 compares the first run failure results from the FORM technique as well as

the well-known Monte Carlo method. Percent differences between the two methods were

calculated. The number of samples was increased from 100,000 to 200,000. The run

times for the Monte Carlo methods were approximately 10 and 20 seconds. The FORM

method took 4 iterations to converge upon 0% error in beta, the dot product, and the g-

function. The run time for the FORM method was on the order of 4 seconds.

Table 2. First Run Comparisons of Probabilities of Failure

Case Number Number of

Monte

Carlo Samples

Probability of

Failure MC

Probability of

Failure FORM

1 100,000 4.783E-02 4.805E-02 0.46

2 200,000 4.787E-02 4.805E-02 0.38

% Difference

Case 1 had a probability of failure of 4.783E-02 calculated using Monte Carlo

while the probability of failure using the FORM method was 4.805E-02. The percent

difference was calculated to be 0.46%. Increasing the number of samples used by the
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MonteCarloresultedin aprobabilityof failureof 4.787E-02. This resulted in a decrease

in the percent difference to a value of 0.38%.

One set of items computed in the first run were the sensitivities of the safety

factor, 13, with respect to the mean and standard deviations of each random design

variable. Figure 2 shows these sensitivity factors.

FirstRunSensitivities

Figure 2. First-Run Sensitivities.

The chart shows that 4 main factors effect the safety factor, 13. As the safety

factor is increased, the probability of failure will decrease. From Figure 2 it is deduced

that the most important design variable parameters are the means of the inner and outer

radii which have sensitivity values of-22.7 and 21.54, respectively; and the standard

deviations of the inner and outer radii, which have values of-2.00 and -1.8, respectively.

Several things can be concluded. If the mean of the inner radius is increased, 13 will
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decrease, and the probability of failure will increase (or vise-versa). The same goes for

increasing the standard deviations of the inner and outer radii, but to a lesser effect. If the

mean of the outer radius is increased, 13 will increase, and the probability of failure will

decrease (or visa-versa).

From these observations, one can deduce that the probability system failure can

be reduced decreasing the mean of the inner and outer radii by the same amount. This

will result in a smaller material cost for the manufacturer. Let the amount of decrease be

0.10 of an inch. Therefore, the new means of the inner and outer radii would then be

6.775 and 7.15 inches, respectively. All of the other values for the 2nd run are the same as

that shown in Table 1.

Table 3 compares the second run failure results of the FORM and Monte Carlo

technique. The number of samples used in the Monte Carlo technique was increased from

100,000 to 200,000. The run times for the Monte Carlo methods were approximately 10

and 20 seconds. The FORM method took 4 iterations to converge upon 0% error in beta,

the dot product (just about), and the g-function. The run time for the FORM method was

on the order of 4 seconds.. Percent differences between the two methods were calculated.

Table 3. Second-Run Failure Results.

Case Number Number of

Monte

Carlo Samples

Probability of

Failure MC

Probability of

Failure FORM

1 100,000 3.76E-02 3.74E-02 0.53

2 200,000 3.74E-02 3.74E-02 0

% Difference
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A probability of failure of 3.76E-02 was calculated using 100,000 samples and the

Monte Carlo method while the probability of failure using the FORM method was 3.74E-

02. The percent difference was calculated to be 0.53%. Increasing the number of

samples used by the Monte Carlo resulted in a probability of failure of 3.74E-02. This

resulted in a decrease in the percent difference to a value of 0%. The probability of

failure as indicated by the FORM calculations decreased by 22.16% from nan 1 to run 2.

The third run performed uses the values in Table 1, and again two items were

varied. One was the mean of the inner radius, which was decreased by 0.1 inches. The

other varied parameter was the mean of the outer radius. It was changed according to the

following formula

Arab = 0.1 (22.72/21.54)/10 Eq. 13

The term in 0's is the ratio of the original sensitivities obtained in the first run.

Therefore, the new inner radius mean was 6.775 inches and the new outer radius mean

was 7.239452 inches. Table 4 shows the results ofaU three runs as well as the change in

parameters.

Table 4. Results of 1 st and 3 rd runs compared. Lengths are in inches.

Run Number Change of

Inner Radius

Mean

Change of

Outer

Radius

Mean

Monte

Carlo

Samples

MC Failure

Probability

FORM Failure

Probability

1 NA NA 200,000 4.787E- 4.805E-02 0.38

02

2 o_1 0.1 200,000 3.74E-02 3.74E-02 0

3 0.1 0.0105479 2O0,000 3.85E-04 4.57E-04 18.7

%Error
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Theprobabilitiesof failure of the first and second runs were of the same order of

magnitude, and the inner and outer radii were both decreased by 0.1 inch. The

probability of failure of the third run was two orders of magnitude lower than that of the

first. This occurred when the inner radius was the only one to be significantly decreased.

It is therefore recommended that the SCUBA tank be redesigned by decreasing the means

of the inner and outer radii by the amounts shown in Table 4. This will decrease the

probability of failure of the SCUBA tank.

Summary and Conclusions

In this paper, the probabilistic redesign of a SCUBA tank was performed by

decreasing the probability of it yielding during a hydrostatic test. Effects that lowered the

material strength and the fatigue of the tank due to filling/refilling were accounted for.

Three different runs were performed on the system. Each run was done using the FORM

technique and the results were verified using simple Monte Carlo. The random variables

for all three runs included the ultimate tensile strength of the material, a surface factor, a

load factor, the inner and outer radii, and the internal pressure during testing.

The first run FORM solution yielded a probability of failure of4.805E-02. A

sensitivity analysis showed that the two most important inputs in the design were the

mean values of the inner and outer radii, whose sensitivities were -22.72 and 21.54,
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respectively. The next highest sensitivity was -2.00 and belonged to the standard

deviation of the inner radius.

The second FORM solution was performed after decreasing the mean values of

the inner and outer radii by 0.1 inch. The probability of failure calculated was 3.74E-02.

Even through a decrease in the inner radius mean produces a decrease in the probability

of failure and vice-versa for the outer radius, the inner radius change dominated because

of the higher sensitivity.

The third FORM solution was performed after decreasing the mean value of the

inner radius by 0.1 inch and decreasing the outer radius by a value equal to the product of

one-tenth the decrease of the inner radius with the ratio of the original inner radius

sensitivity to the original outer radius sensitivity. The probability of failure calculated

was 4.57E-04. The probability of failure was decreased by two orders of magnitude. The

third run was the design chosen to be the new one. Using those values should result in a

much safer system.
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USE OF PROBABILISTIC METHODS IN DESIGNS OF FLUIDIC SYSTEMS

Rodney Harris**, Cody Godines*, Luis Rangel*,. Edgar C. Herrera*, Randall D. Mauteufel 1
University of Texas at San Antonio, San Antonio, TX 78249-0665

Abstract

A common problem in fluidic systems is the proper
selection of pump, pipes and fittings that will produce
the desired flow in a system. Systems are often
designed with excessive pump capacity as a result of
conservatively overestimating the head loses and under

estimating pump capacities. Once in operation,
excessive throttling may be required which lowers
efficiency and often introduces unwanted vibrations or
noise. Probabilistic methods are used to aid in the

design of fluidic systems. The piping network is
examined for the probability that the flow rate through

a component is above a minimum acceptable value.
This is analogous to the probability of failure for a
structural problem. The important variables are
identified to lead the engineer in identifying potential
design changes. A series piping system is evaluated as
an example.

Introduction

Engineering analysis and designs involve computer
software that can determine how the system performs
under certain conditions of the variables the response is
dependent on. This includes simulation of thermal-

fluid systems such as pumps, series or parallel piping,
valves, and heat exchangers. Due to the many failure
modes of complex systems, many software packages
are not practical for optimizing designs.

Through the use of the NASA developed program,
called Numerical Evaluation for Stochastic Structures

Under Stress (NESSUS), reliability-based analysis can
be performed as a first step in the design of fluidic
systems.

NESSUS is a FORTRAN based code, which includes a
Fast Probability Integration (FPI) module for handling
probabilistic analysis. The FPI module was utilized in

*Graduate Research Assistant

**Undergraduate Research Assistant
Assistant Professor of Mechanical Engineering

Copyright©2002 by R.D. Manteufel, Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission
this study of a series-piping system design. This
portion of the code requires a user to input the system
performance, or response, equation(s) as a function of

the variables it depends on. This can be done using a
graphical interface, manipulating the input file, or
writing a FORTRAN subroutine called RESPON and
linking it with the rest of the program. This subroutine
provides the user a way to keep track of the conversions
used, set up multiple response equations, and write an
organized algorithm to aid in the response calculations.
The underlying random variables are identified as
random by entering their appropriate statistics and
distribution type; thus, the response is also random and
by estimating its statistics the reliability of the system
can be quantified.

The response of a series piping system was written in
the RESPON subroutine and the Advanced Mean Value

plus iteration (AMV+) method was used in the analysis.
The NESSUS User's Manual suggests this method
because of its efficiency. The Standard Monte Carlo
simulation is accurate, yet time consuming, and it was
mainly used to verify the results of a few runs.

Methodology

As an example problem, an oil transfer system is
designed to pump light oil through a series connection
of different sizes and lengths of pipes, as shown in
Figure 1. The direction of flow is from tank 1 to tank 2
(through a 30-ft increase in elevation of fluid level).
The piping system is designed to operate at a nominal
flow rate, Q, of 1500gpm. Valves, reducers, and
elbows are also present within the system and

Figure 1. Light oil transport system.

contribute to the head or frictional losses, which the

pump must overcome in order to maintain system
functionality. The dashed line leading to the second
tank represents eight-inch diameter pipe with five 90-
degree angle elbows, whose contribution to the system

ta_k !

head was accounted for in the analysis.

_ank 2
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Basedon theuncertaintythat exists in the system
design variables, the flow rate will also be random.
One may want to ensure that the system will deliver at
least a minimum flow rate by calculating the probability
of observing flow rates above a minimum acceptable
value, which, for this specific problem, is 1400gpm.
This probability would be a measure of the reliability of
the system. Conversely, the probability that the flow
rate would fall below 1400gpm would be the
probability of failure. The reliability of the system
shown in Figure 1 and the variables that contribute
most to its uncertainty will be discussed.

Although many responses of this system could be
studied, the response we are concerned with is the
difference in the head the pump can deliver, Hp, and the
system head that needs to be overcome, Hs. This
response is shown in Equation 1.

Z = H e - H s (1)

The response is a function the flow rate, Q, along with
many other variables. It is important to keep in mind
that once all dependent variables are realized, except
for Q, the two terms become solely dependent on Q.
The system will operate, in steady state, at the point
where the pump head matches the system head. During
the NESSUS execution, the dependent variables, except
for Q, are realized, and the RESPON routine, which
was coded with the Newton-Raphson routine is called

upon and solves for the Q that satisfies the equation Hp
= Hs. Also, considering the two terms in Equation 1 to
be functions, when all dependent variables are set with
a value, along with Q, and if the response is negative,
then the actual steady state flow rate will be lower than
the Q used to calculate the two head terms. This is
because the system requires more head than the pump
can deliver at that flow rate. If the response is positive
then the system will operate at a higher flow rate than
that entered.

The pump head is given in Equation 2, where Q is the

flow rate in gallons per minute (gpm). HP is a factor
that introduces uncertainty into the pump head and its
distribution and statistics are shown in Table 1. Using a
random variable to reduce modeling error or capture
uncertainty is common in a probabilistic analysis. This
equation is only a rough approximation of a centrifugal
pump near the anticipated operating point for this
system, and is a curve fit to manufacturer specified
pump characteristic data.

Hp = HP(572 + 0.0384Q - 0.00006Q 2) (2)

A form of the energy equation is used to model the
system head Hs, as expressed in Equation 3.

L i

P gc 7Z 2g c i=1 D 4

The system head is consists of three terms representing
the pressure difference and elevation difference
between ends of the piping system, and the fluid
frictional losses through the piping and fitting. For this
example, the first term is zero because the fluid in both
tanks is exposed to atmospheric pressure. The second
term is the head required to overcome an elevation

increase, AZ. This term is not dependent on the flow
rate. The total head loss due to pipe friction and the
numerous valves and fittings in the pipe system is
accounted for in the last term where f, L, D and K

represent the friction factor, pipe length, pipe diameter,
and minor loss coefficient of the respective pipe or
fitting location. The variable F, like HP in Equation 2,
is used to capture more of the uncertainty present in the
friction factor equation. The Churchill curve fit is used
for the friction factor, (Hodge and Taylor, 1999), and is
shown below in Equation 4.

1f-- Lt ) ( A+ B)l'$

(4)

The parameters A and B, given in Equations 5 and 6,
are functions of the local Reynolds number, ReD, and
the relative roughness of the section under

consideration, s l D .

= 1 _',16

A _2.4571nl
(s)

[ L(7tR%)

°
_, R% ) (6)

Although the Churchill equation is complex, it can be
used in the transition region between laminar and
turbulent flow as well in the turbulent region for non-
smooth pipes. The Churchill equation does represent
one of the major sources of nonlinearity in the system.

The statistical data for the 16 variables of the system is
_hown in Table 1, and the nther ._y_tem parameter_ are
shown in Table 2. All of the variables are normally
distributed. The uncertainty factors, HP and F, have a
mean of 1 and coefficient of variations of 5% and 2.5%,
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respectively.
Table 1. Random Variables

Variable
HP

L6

L8

L12

D6

D8

D12

AZ

K6

K8

K12

P

F

Description Distribution
Pump-head correction N(1, 0.05)
factor

Length of 6-in. pipe N(15, 2.5)
(ft)
Length of 8-in. pipe N(6010, 100)
fit)
Length of 12-in. pipe N(300, 10)
(ft)
6-in. pipe diameter N(6.065, 0.025)
(in)
8-in. pipe diameter N(7.981, 0.025)
(in)
12-in. pipe diameter N(11.938, 0.025)
(in)
Elevation increase (ft) N(30, 0.5)

Minor loss coefficient N(2.2, 0.205)

for fittings in 6-in pipe
Minor loss coefficient N(3.06, 0.425)

for fittings in 8-in pipe
Minor loss coefficient N(2.2, 0.53)

for fittings in 12-in
pipe
Density of light oil N(56.9, 1E-7)
(lbm/ft 3)

Viscosity of light oil N(4.3E-2, 7.6E-3)
(lbm/ft-s)
Pipe roughness (ft) N(1.5E-4, 3.75E-

5)
Friction correction N(1, 0.025)
factor

Table 2. S

Variable

f

g

gc

O

'stem Parameters

Description Value
Friction factor See Equation 4

Gravitational constant 32.174
(ft/s2)
Conversion factor (fi- 32.174
lbm/lbf-s 2)
Flow rate (fi3/s) Specified

Characteristic curves of the pump and system were

obtained and show the possible range of interaction
between the pump and the piping system. For the
pump, this was done by entering Equation 2 as the
response in NESSUS, setting a Q value, and executing
the code to obtain the pump head value (for that Q) at
which there is a 2.5% chance that the pump head will
be below that value. This was also done to obtain the

50% and 97.5% quantiles of the pump head, at that flow
rate. This was repeated for Q values ranging from 500
to 2000 gpm. The same type of analysis was performed
by using Equation 3 and its dependencies, Equations 4,
5, and 6, for flow rates ranging from 1000 to 1900.
Some of the results of analyzing the system head, Hs,
are shown in Table 3. Interpreting the data in Table 3
must be done cautiously. At the flow rate of 1000 gpm,
the system head will be below 225.6 ft-lbf/lbm 2.5% of
the time. This value is random only because the
underlying random variables are also random. It will be
below 252.7 and 278.2 ft-lbf/lbm 50% and 97.5% of the

time, respectively.

Table 3. Piping system head required for different
values of flow rate at the respective lower limit,
middle, and upper limit probability levels P (.025, .5,
.975).

Hs(ff-lbfflbm)

(gpm) P(0.025 P(0.5) P(0.975

1000 225.6 252.7 278.2

1100 260.9 292.3 322.1

1200 298.6 334.8 369.0

1300 338.8 379.9 418.9

1400 381.5 427.8 471.7

1500 426.7 478.4 527.4

1600 474.2 531.6 586.0

1700 524.1 587.3 647.5

1800 576.3 645.7 711.7

1900 630.9 706.6 778.7

The system head data of Table 3 and similar data for
the pump head, Hp, is plotted in Figure 2. As expected,
the head that the pump can deliver will decrease and the
system head will increase as the flow rate increases. At
a specified flow rate, the pump and system head each
have three values that were calculated using NESSUS,

for which a portion of these values is shown in Table 3.
At a given flow rate, the lower value of the respective
curve is the value at which there is a 2.5% probability

of the appropriate head falling below this value. This
line is the lower dashed line of the pump and system
head curves. The solid middle line at a certain flow rate
is the value at which there is a 50% chance that the

pump or system head will be below this value. For the
upper, dashed line at a specific flow rate, that is the
value at which there is a 97.5% chance of observing a
head below that value. Therefore, for either the pump
or system curve and at a specific flow rate, 95% of the
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time the head value will be between the upper and

lower values of the dashed curve.

Consider a low flow rate of 1200gpm and the head

curves shown in Figure 2 and let the following values

be non-exact read offs from the same figure. The pump
head will be below 475ft-lbf/lbm 2.5% of the time and

the system head will be above 370 ft-lbf/lbm 2.5% of

the time. There is therefore little chance that the pump

and system head will ever be equal; hence, there is a

very low probability that the pipe system will operate at

1200gpm.

Pump and System Characteristic Curves

7OO

g6oo=.. . .... ".... "'"'i-- e"

400
-r"

30O

1000 1200 1400 1600 1800 2000
Q (gpm)

Figure 2. Head curves as functions of flow rate for

the pump Hp, and the piping system Hs.

For a flow rate of 1400gpm, the pump will deliver a
head between 455 and 555 ft-lbf/lbm 95% of the time

and the system head will be between 380 and 480 ft-

lbf/lbm 95% of the time so there is a decent chance that

the pump and system head will be equal. Therefore,

there is a higher probability that the pipe system will

operate at a flow rate of 1400gpm than at 1200gpm.

This overlap of probable values of the pump and system

head can be considered to begin when the two curves

begin to intersect at 1380gpm. The overlap increases

up to the intersection of the solid lines of the two

curves, which occurs at 1524gpm, close to the nominal

value 1500gpm that the system is designed for. Then it

decreases until the curves finish their fmal intersection

at 1680gpm. These values were estimated using linear

interpolation among the head data, and then pinpointed

with additional runs.

Monte Carlo sampling was used to visualize how often

the system performed within the diamond region shown

in Figure 2. Basically, 500 sets of values of the random

variables in Table 1 were obtained using Monte Carlo

sampling and formed coordinates in the

multidimensional space, which is the domain of the

pump and system equations. For each coordinate, a

Newton-Raphson routine solved for the Q that satisfied

the equation Hp = Hs = H, and the (Q,H) pair was

recorded. The results are illustrated in Figure 3. As a

rule of thumb, it is estimated that 2.5% are to the

outlying sided of each of the four lines, hence

(2.5%)x(2.5%) are in the outlying comers of each.

560

540

E 520

_, 500

480

46O

44O

420

Pump and System Head Scatter Plot at 500 samples

eQ • • •

1350 1400 1450 1500 1550 1600 1650

Flow Rate, Q(gpm)

Figure 3. Scatter-plot for Head and Flow.

1700 1750

Figure 3 conftrms that the vast majority of observations

are within the uncertainty box and that only a few

observations are outside (about 95%X95%=90.25%

within, and 9.75% outside). As a quick estimate, the

probability of operating with a flow rate less that the

minimum comer flow rate is the sum of three regions:

2.5%x2.5%+2.5%x95%+2.5%x95% = 4.8% or simply
5%.

For this problem, the cumulative distribution function

(CDF) was calculated by NESSUS via multiple runs.

The CDF of the flow rate is shown in Figure 4.

Entering flow rates ranging from 1380 to 1700gpm at

intervals of 20gpm, NESSUS calculated the probability

that the response of Equation 1 is less than zero. This

implies that the system head is greater than the pump

head and therefore this is the probability that the flow

rate will be less than that entered by the user.

Cumulative Dislribution Plot for Flow

Rate

l0.8J

0.6

0.4

o.. 0.2

0.0.

1380 1480 1580 1680

a (gpm)

Figure 4. Probability of achieving a flow rate that is

less than Q.

Recall that the minimum acceptable flow rate for this

problem was 1400gpm. It was calculated that there is a

0.9% probability that the system flOW rate will be less
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than1400gpm.A MonteCarlosimulationwasusedto
verifythisprobability,andtherewasonlya small
marginof error(2.69E-4). Figure5 showsthe
probabilitydensityfunction(PDF)forthesystemflow
rate,Q. Thiswasderiveddirectlyfromthedata
providedbytheCDFbecausethePDFisthederivative
oftheCDF.

Probability Density Plot for Flow Rate

._' 0.15

0.10

2 0.05
Q.

0.00

1380 1440 1500 1560 1620 1680

Q (gpm)

Figure 5. The probability density for the flow rate

Q.

The AMV+ method provided by NESSUS also

calculates the probabilistic sensitivity factors, or

"alphas's" for each of the design variables. The alpha

of a variable represents the overall importance of that

variable because it is the sensitivity of the response to

that variable multiplied by its range or standard

deviation; thus, the range is used to weight the

sensitivity of the response to a variable. Figure 6 shows

the variables as they contributed to the uncertainty of

only the system head at a flow rate of 1524gpm and at

the 50% head value level. Viscosity contributed to

about 67% of the uncertainty of the system head. The

friction factor was next contributing 18% to the system

head uncertainty, followed by the length and the

diameter size of the nominal 8-inch pipe at 7.8% and

6.3% respectively. The total contribution of the

remaining components was about 0.5%. The pump bead

is not a part of this variable importance discussion.

100

80

60

40

20

0

VIS

Sensitivity Factors

F L8 D8 Others
Design Variables

Figure 6. Sensitivity Factors.

CONCLUSIONS

This work demonstrated the use of NESSUS in

evaluating the design of a series piping system. The

probability that the system flow rate will be less than

1400gpm was calculated with the AMV+ method to be

only 0.9%, and this was verified with a Monte Carlo

run. The system is thus 99.1% reliable in operating at a

flow rates over 1400gpm. However, according to the

distribution shown in Figure 5, it is more probable that

the oil transfer system will operate closer to 1524gpm,

which is the apparent mean of that PDF, than the stated

nominal design of 1500 gpm. The viscosity was

identified as the design parameter that is most

significant in dominating the piping system

performance, owing to its 67% significance in system

sensitivity. These results demonstrate the versatility of

the NESSUS program to a wide variety of applications.
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APPENDIX IV-A: NESSUS PROGRAM LEVELS & SUBROUTINE PATH FOR
MC P-LEVEL ANALYSIS

_kctions [ _?arent Subroutine [

I LEVEL 1 ']

, NESSUS I
I |

blank DOS window up. I
no files made. Read *NESSUS goto LEVEL 2 1
now:essus.............. ? _ff___ ,

....... [_ I

(STOP -._ [. LEVEL 3 I

"Enterinputfile.." mDOSwindow , .... ' PROMPT_USER
I

Makes ail files (Okb) except *izai, ,' " i ...... " INTINT

scodefpi.*, analytical* and *.verify .....

•OUTPUT header HEADER i

SCREEN header .......... . .....
• ' NEWNZSSUS

(-STOP _ ....................

Child Subroutine I

timer.f .....

verinc.f

prompt_user.f
intint.f

reinlt.f

Jntini.f

init_input.IgO
header.f

•new_nessus.f90 #ALL

set_w0r Idng_directory.f90

init input.190

r ead_n essus_input.f90

--model setup.f90

fpi.f #ALL

LEVEL 4 ]

probid=only filename w/o' ext Or dir ..... ' Set working directory

initialize derived da_ types .... i ..... i ..... init input ......

analytical and scodefpi files added ....
.... read nessus input .....

read card (in string_ functions.f90)

parsa256.f (in string functions.f90)

process_zfdefine.f90
process_rvdcfine.f90

process__padcfine.fg0

proeess_modeldef.tg0

echo_input.t90

stuff commons.f90 *look #ALL

Nothing happens. ...... . .... .... m0del'setu p ' ,.

fpi̧ ¸
fsetul,f

.... cmpfpLf

dumpsf.f

quit.f #ALL

NASA/CR--2002-212008 232



LEVEL 5 ]

process modeldef.f90

oooooooooooooooooooo
process_zfdefme

proeess_rvdefme

process__padefine

.... st_fr commor_.r90

[ LEVEL 6 ]

oooooooooooooooooooo , redprm.f
fsetup ......... redmod,f .......

gcoeff , _ ....... senstv.f

xfpi -: .... monte.f #ALL

oooooooooooooooooooo nul.f
............. nulint.f

samsen samh.f

[ LEVEL 7 ] parsa2.f .....
upper.f

redprm stchar.f
parser-f ........

sensW ......... resold.f

wall timed
mapdist.f
irandom.f (random(seed))
xinv.f

............. _ _ _ gfunet.f
monte - qsort.f

LEVEL 8 ]

gfimct
resold.f

pdeorr.f ........ i

parser.f
......... parsa2.f

redmod inranv.f
............. inlvls.f

upper.f

.................. mresold ........ evaluate models.fgo
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APPENDIX IV-B: OUTPUT FILE AND THE SUBROUTINES THAT PRODUCE
THE SHOWN ITEMS

,d

N'N

Nl_ IN NNNI_ NN

NI_ N NN

NI_ NNN

N_ NNN

N_ NN

OUTPUT FILE: SAE1.OUT :

Unit I(ILPRINT, munit)

EEEEEEEE SSSSSSS SSSSSSS UU UU SSSSSSS

EE SS SS UU UU SS

EE SS SS UU UU SS

EEEEEE SSSSSS SSSSSS UU UU SSSSSS

EE SS SS UU UU SS

EE SS SS UU UU SS

EEEEEEEE SSSSSSS SSSSSSS UI/UUUU SSSSSSS

_EADER ]9-06-2001 3:43 - LEVEL 3.00(

..... _ate: 08/14/01 12:01:21

39) - DATED JUL i, 2000

T_

OF

CL

SO

RE

WARR

OF

Pl

OF

IS IS A PROPRIETARY PROGRAM. IT MAY ONLY BE USED UNDER THE TERMS

THE LICENSE AGREEMENT BETWEEN SOUTHWEST RESEARCH INSTITUTE AND THE

IENT.

JTHWEST RESEARCH INSTITUTE DOES NOT MAKE ANY WARRANTY OR

PRESENTATION WHATSOEVER, EXPRESSED OR IMPLIED, INCLUDING ANY

_NTY

MERCHANTABILITY OR FITNESS OF ANY PURPOSE WITH RESPECT TO THE

_GRAM; OR ASSUMES ANY LIABILITY WHATSOEVER WITH RESPECT TO ANY USE

THE PROGRAM OR ANY PORTION THEREOF OR WITH RESPECT TO ANY DAMAGES

WHICH

MAY RESULT FROM SUCH USE.

_d_

*TITLE SAE TEST CASE 1

*DESCRIPTION

SAE TES_ CASE 1 CYCLES TO FAILURE NON-LINEAR, NON-NORMAL 4 RANDOM

VARIABLE S

*RVI_EFII _ --

* PAmEl? II_E
I

*MODELD_FINE

*END NE_US
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End of file reached: checking data..

..........

LINE

1 *FP]

2 NESS

3 *RVN

4 *GFU

5 *ME_

6 *PRI

7 *AN_

8 *ENE

9 *MOK

i0

II

12

_3.0_ FsETU1

15 -_

-0.1010067E-0E

16 0

3.090522

17

5.611680

18 *DE

19 KIC

20 6

21 AI

22

23

24

25

26

27

***** INPUT ECHO *****

US generated FPI deck: Analytical model: ANALYTICAL_I

UM 4

NCTION USER

HOD MONTE

NTOPT

LTYP

TE

i000

AXTIME

500000.

.326785

;741892

719124

RANVR

.00000

0. )00000E-01

C

0. _00000E-09

DS

1 0.0000

*ENE

PLEVEL

1

7654321 1.00000

20 1

-4.753258 -4.264844

-1.281729 -1.036431

1.036431 1.281729

4.264844 4.753258

6.000000 NORM

0.5000000E-02 LOGN

0.1200000E-10 LOGN

I0.00000 LOGN

-3.719124

-0.6741892

2.326785

5.199082

***** p

L__.

_AMETER INTERPRETATION *****
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Problem Titl,

ANALYTICAL 1

Number of R_

Type of Resp_

6 = Use:

Respons_

Number of Da

Solution Tecl

6 = Stau

*MOI

Analysis Typ(

2 = Use]

*PL]

Tim(

Confidence Ii

0 =No

Print option

0 = Sho_

Debugging Opt
-I = No

.... CMPFPI

1

NESSUS gener _ted

Problem Titl(

ANALYTICAL 1

+

User-Defined

Number

Ldom Variables:

_nse (g) Functic

-defined respon
function must

asets: 0

mique :
Ldard Monte Carl

FfE keyword is r

•-defined probah

:VELS keyword is

consuming anal

terval Calculat

•t printout

_ion:

SETUP

*****

_: NESSUS gener

Probability P-I

P-Level

0.I0033E-06

0.I0021E-05

0.I0009E-04

0.99987E-04

FPI deck: Analytical model:

4

i Approximation:

3e function

)e programmed in subroutine RESPON

) method (Radius = 0)

_quired in model input data

[lity levels (P-levels)

required in model input data

'sis because of iteration procedures

on on CDF:

MODEL INTERPRETATION *****

_ted FPI deck: Analytical model:

evels:

u-level

-5.1991

-4.7533

-4.2648

-3.7191
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5 0

6 0

7 0

8 0

9 0

I0 0

Ii 0

12 0

13 0

14 0

15 0

16 0

17 0

18

19

2O

99909E-03

99883E-02

99969E-01

15000

25010

50000

.7499q

.85000

.90003

.99001

.99900

.99990

.99999

1.0000

1.0000

l.O00O

Random Varia

Random V

Deviation

+

le Statist

KIC

AI

C

DS

User-Defined

Equation

Standard Mon'

Mini]

Allow

Maxil

Lriable D

.cs:

[stribution

NORMAL

SETUP.F

Response F

Number =

;e Carlo Me

_um Sample

-3.0905

-2.3268

-1.2817

-1.0364

-0.67419

0.0000

0.67419

1.0364

1.2817

2.3268

3.0905

3.7191

4.2648

4.7533

5.1991

5.6117

illowable E

_ble Confid

hum Sample

Mean Standard

60.00

0.1000E-01

0.1200E-09

I00.0

_nction Equation Parameters (Sub

6.000

0.5000E-02

0.1200E-10

I0.00

[RESPON]) :

;hod (Radius = 0):

ize = I000

eed = 0.765432E+07

_ror = 0.100000

_nce = 0.950000

lize = 2000000

Maximum Tall Time (_ec) = 500000.

Empirical CDF _ tint = OFF

_istogram Point = OFF

X-space tamples wi_ be written to jobid.smx file.

I

u-_s will be written to jobid.smu file

QOQQQIQQOIOOIO

Skip factor =

Skip factor =

**** OUTPUT SUMMARY

'gcoeff :
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PROBLEM TITLE: NESSUS generated FPI deck: Analytical model:

ANALYTICAL 1

RESPONSE FUNCTION (LIMIT STATE): USER-DEFINED FUNCTION

IN SUBROUTINE [RESPON]

APPROXIMATE STATISTICS FOR Z:

MEDIAN = 0.1575E+05

MEAN = 0.1419E+05

STANDARD DEVIATION = 7086.

Unnecessary evaluations for sampling

method.

NOTE: Standardized Normal Variates are used in the following

analysis.

This means that the random variable, u, represents a normal

probability distribution with mean = 0 and standard

deviation = i. For example, u = -3 implies that the chance

of observing a u value <= -3 is .00135 (cdf). Also, u = 3

implies that the chance of observing a u value <= 3 is 0.99875.

ooooooo4

NUMBER OF SAMPLES FOR P]

h'OOOO00

EVELS ANALYSIS :

MONTE CARLO SOLUTION:

NUMBER OF VARIABLES =

NUMBER OF SAMPLES =

SAMPLE MEAN = 1.733Z

SAMPLE STD. DEV. = !

_(FPI.F
RANDOM VARIABL_ .... _o_.

4

1000

9E+04

.44439E+03

I000

Random Input Input Sample Sample % error

%error

Variable Mean td. Dev. Mean Std. Dev. Mean

Std. Dev.

...................................................

KIC 60.00 .000 60.18 5.968 0.30

0.53

AI 0.1000E-01 0.5000E-02 0.1006E-01 0.5368E-02 0.57

7.37

C 0.1200E-09 0.1200E-I0 0.1203E-09 0.1200E-I0 0.27

0.02

DS 100.0 I0.00 100.3 9.849 0.30

1.51

CDF SUMMARY

Pr (Z<=Z0) Z0 #Pts<=Z0 Error (* )
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0.I003285E-06 -5.199081

0.I002053E-05 -4.753258

0.I000893E-04 -4.264844

0.9998665E-04 -3.719123

0.9990933E-03 -3.090522

0.9988332E-02 -2.326784

0.9996893E-01 -1.281728

0.1500006 -1.036431

0.2500954 -0.6741884

0.5000000 0.000000

0.7499046 0.6741893

0.8499994 1.036431

0.9000311 1.281729

0.9900117 2.326785

0.9990009 3.090523

0.9999000 3.719124

0.9999900 4.264845

0.9999990 4.753259

0.9999999 5.199082

1.000000 5.611680

0.000000

0.000000

0.000000

0.000000

-66.25305

3281.138

7861.708

9101.901

10884 73

15224 53

21223 51

26439 09

29525 22

46911 88

70770 09

74538 91

74538 91

74538 91

74538.91

74538.91

at 0.95 confidence(*) Sampling error

0

1

i0

i00

150

250

5OO

75O

85O

9OO

990

999

i000

i000

I000

I000

I000

0 195.6752

0 61.91593

0 19.59079

6.198052

1.959873

0.6170518

0.1859706

0.1475404

0.1073243

0.6!97949E-01

0.3579298E-01

0.2603665E-01

0 2065626E-01

0 6225501E-02

0 1960054E-02

0 6197845E-03

0 1960848E-03

0 6204310E-04

0.1963180E-04

0.6212061E-05

QOQOOOOOQ

Probabi

=

Level= 1 Z0

1

Random

Variable

KIC

AI

C

DS

Level= 2 Z0

1

Random

Variable

UMPSF

0000000000000000000

kistic Sensitivity Results printed by level

**********************************************************

0.00000 CDF=0.100329E-06 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d(sig) d(mu) p d (sig) p

.........................................................

1.3953E-07 0.7671E-07 -2.364 4.588

I.I012E-04 0.9823E-04 0.5046 4.895

2642. -8103. 0.3160 -0.9692

_.2013E-07 0.4975E-07 2.007 4.959

0.00000 CDF=0.100205E-05 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d (sig) d(mu) p d (sig) p

I
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KIC -0.3948E-06 0.7662E-06 -2.364 4.588

AI 0.1011E-03 0.9811E-03 0.5046 4.895

C 0.2639E+05 -0.8093E+05 0.3160 -0.9692

DS 0.2011E-06 0.4969E-06 2.007 4.959

=

Level=

1

3 Z0= 0.00000 CDF=0.100089E-04 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

Random ................ * ......... * - - -

Variable d(mu) d (sig) d(mu) p d (sig) p

.......................................................................

KIC -0.3943E-05 0.7653E-05 -2.364 4.588

AI 0.1010E-02 0.9799E-02 0.5046 4.895

C 0.2635E+06 -0.8084E+06 0.3160 -0.9692

DS 0.2009E-05 0.4963E-05 2.007 4.959

=

Level= 4 Z0=

1

Random

Variable

KIC -i

AI

C

DS

No failure sa

=

Level= 6 Z0

I0

Random

Variable

KIC

AI

C

DS

0.00000 CDF=0.999867E-04 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d(sig) d(mu) p d(sig) p

.3939E-04 0.7645E-04 -2.364 4.588

.1009E-01 0.9789E-01 0.5046 4.895

.2633E+07 -0.8076E+07 0.3160 -0.9692

.2007E-04 0.4958E-04 2.007 4.959

_les found for level 5

3281.14 CDF=0.998833E-02 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d (sig) d(mu) p d(sig) p

.........................................................

).1251E-02 0.2468E-03 -0.7515 0.1483

1.563 6.122 0.7822 3.065

.4871E+09 -0.1851E+09 0.5852 -0.2224

.1555E-02 0.3261E-02 1.557 3.265
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Level= 7 Z0= 7861.71 CDF=0.999689E-01 No. Failure Samples=

I00

d(p) d (p) d(p) sig d(p) sig

Random ................ * ......... . - - -

Variable d(mu) d (sig) d(mu) p d (sig) p

.......................................................................

KIC -0.5014E-02 -0.1293E-02 -0.3010 -0.7759E-01

AI 20.97 21.00 1.049 1.050

C 0.2742E+I0 -0.5152E+09 0.3292 -0.6184E-01

DS 0.9617E-02 0.8187E-02 0.9620 0.8190

Level= 8 Z0= 9101.90 CDF=0.150001 No. Failure Samples=

150

d(p) d(p) d(p) sig d(p) sig

Random ................ * ......... * - - -

Variable d(mu) d (sig) d(mu) p d (sig) p

.......................................................................

KIC -0.5393E-02 -0.7575E-03 -0.2157 -0.3030E-01

AI 30.33 16.45 1.011 0.5482

C 0.4867E+I0 0.5094E+09 0.3894 0.4075E-01

DS 0.1379E-01 0.8382E-02 0.9190 0.5588

Level= 9 Z0= 10884.7 CDF=0.250095 No. Failure Samples=

249

d(p) d(p) d(p) sig d(p) si s

Random ................ * ......... * - - -

Variable d(mu) d (sig) d(mu) p d (sig) p

KIC ).3668E-02 -0.1554E-02 -0.8801E-01 -0.3728E-01

AI

C

DS

=

Level= i0 Z0:

50O

Random

Variable

47.01 8.522 0.9399 0.1704

.6584E+I0 -0.2846E+09 0.3159 -0.1366E-01

.2018E-01 0.7090E-02 0.8070 0.2835

15224.5 CDF=0.500000 No. Failure Samples=

d (p) d (p) d (p) sig d (p) sig

d(mu) d(sig) d(mu) p d (sig) p
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KIC -0.5228E-02 0.I163E-02 -0.6274E-01 0.1395E-01

AI 68.36 -15.14 0.6836 -0.1514

C 0.7685E+I0 -0.1757E+I0 0.1844 -0.4217E-01

DS 0.2946E-01 -0.2469E-02 0.5893 -0.4938E-01

=

Level= ii Z0= 21223.5 CDF=0.749905 No. Failure Samples=

251

d(p) d(p) d(p) sig d(p) sig

Random ................ * ......... * - - -

Variable d(mu) d (sig) d(mu) p d(sig) p

.......................................................................

KIC 0.9230E-02 0.9673E-03 0.2214 0.2321E-01

AI -74.93 47.46 -1.498 0.9487

C -0.5949E+I0 0.3434E+10 -0.2855 0.1648

DS -0.2211E-01 0.1131E-01 -0.8840 0.4523

Level= 12

150

Z0= 26439.1 CDF=0.849999 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

Random ................ * ......... * - - -

Variable d(mu) d (sig) d(mu) p d(sig) p

KIC 0.6017E-02 0.1478E-02 0.2407 0.5914E-01

AI -57.59 41.81 -1.920 1.394

C -0.4344E+I0 0.2924E+10 -0.3475 0.2340

DS -0.1742E-01 0.1295E-01 -1.161 0.8632

Level= 13

i01

Z0= 29525.2 CDF=0.900031 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

Random ................ * ......... * - - -

Variable d(mu) d (sig) d(mu) p d (sig) p

KIC 0.2334E-02 -0.7683E-03 0.1401 -0.4611E-01

AI -44.14 34.47 -2.208 1.724

C -0.3231E+I0 0.2294E+10 -0.3878 0.2753

DS -0.1391E-01 0.1305E-01 -1.391 1.305
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=

Level= 14

ii

Random

Variable

Z0: 46911.9 CDF=0.990012 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d(sig) d(mu) p d(sig) p

KIC

AI

C

DS

=

Level= 15 Z0

2

Random

Variable

KIC

AI

C DUMPSF
DS

.5415E-03 0.8043E-04 0.3253 0.4831E-01

-8.268 7.957 -4.139 3.983

).2563E+09 -0.3186E+09 -0.3079 -0.3827

).2248E-02 0.3125E-02 -2.251 3.129

70770.1 CDF=0.999001 NO. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d(sig) d(mu) p d(sig) p

.........................................................

1.5568E-04 -0.3061E-05 -0.3344 -0.1838E-01

1.9587 0.9510 -4.798 4.759

-0.6268E+08 -0.7629E-01 -0.7528

0.5709E-03 -3.117 5.714

=

Level= 16 Z0

1

Random

Variable

KIC

AI

C -i

DS -_

=

Level= 17 Z0

1

Random

Variable

74538.9 CDF=0.999900 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d(sig) d(mu) p d(sig) p

.........................................................

.9970E-05 -0.1070E-04 0.5983 -0.6421

.1032 0.1050 -5.159 5.251

.4574E+07 -0.4761E+07 -0.5489 -0.5714

.2799E-04 0.4637E-04 -2.800 4.638

74538.9 CDF=0.999990 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d(sig) d(mu) p d(sig) p
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KIC 0.9980E-06 -0.I071E-05 0.5983 -0.6421

AI -0.I033E-01 0.1051E-01 -5.159 5.251

C -0.4578E+06 -0.4766E+06 -0.5489 -0.5714

DS -0.2802E-05 0.4642E-05 -2.800 4.638

=

Level= 18 Z0=

1

Random

Variable

74538.9 CDF=0.999999 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d(sig) d(mu) p d(sig) p

.........................................................

KIC

AI

C

DS

Level= 19 Z0

1

Random

Var_ ah]

_____U_SF

1.9992E-07 -0.I072E-06 0.5983 -0.6421

_.I034E-02 0.I052E-02 -5.159 5.251

.4584E+05 -0.4771E+05 -0.5489 -0.5714

.2805E-06 0.4648E-06 -2.800 4.638

74538.9 CDF= 1.00000 NO. Failure Samples=

d (p)

d (m11_

d(p) d(p) sig d(p) sig

I...... -_!_-_-_-_-....... -_!mu!--_-..... -_!-t_-_----_.......
KIC

AI

C

DS

Level= 20 Z0

1

Random

Variable

.1000E-07 -0.I074E-07 0.5983 -0.6421

.I035E-03 0.1054E-03 -5.159 5.251

-4589. -4777. -0.5489 -0.5714

.2809E-07 0.4653E-07 -2.800 4.638

74538.9 CDF= 1.00000 No. Failure Samples=

d(p) d(p) d(p) sig d(p) sig

d(mu) d(sig) d(mu) p d(sig) p

KIC 0.1002E-08 -0.1075E-08 0.5983 -0.6421

AI -0.1037E-04 0.I055E-04 -5.159 5.251

C -459.5 -478.3 -0.5489 -0.5714

DS -0.2812E-08 0.4659E-08 -2.800 4.638

"""sG;;&'_;_;;_" ""
J;G; cod2,G
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ELAPSED CPU TIME : 0.76 seconds

.Y2...!................................
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APPENDIX IV-C: NEW FILES AND SUBROUTINES FOR NESSUS LHS
ENHANCEMENT

FILE (1): lhs_main.f90

SUBROUTINE LHS_MAIN 0

! Latin Hypercube Main Entrance
!:

! Cody Godines, September 2001
!

!***t0*******

!

!padei_/omcthod=LHS, this is what I chose!

!NESSUS Files Changed:
!==

!File

! .....

!

!new nessus.fg0

!pmcess__padefine.tg0
!stuff commons.D0

!mast_axam.f90
t

!nes sus_derived_types.fg0

!init_input.f90

!intint.f

!monte.f

!mapdist.f

!stuff commons.D0

!

!infint.f

!master_param.fg0

!nes sus_derived_typcs.D0

!init_input.f90

!gcoeff.f
!stuff commons.fg0

!stuff-eommons.fg0

!

!

!
!

!

!NFRRIIR 12i1_ Add_l.

!File

llhs main.D0

TEMPNOTES ********************************

Reason Changed

Call to LHS MAIN instead of FPI

To read in sampling i_o ifLHS

CASE ('LHS'), at begining of routine

One place where unit numbers are defined globally

Long/Short string length
Type messages and calculation

To initialize new variables in nessus_dedved_types.fg0

Use master_pamm.f90

To open lhs sample files
Use master_pamm.f90, so removed:

PARAMETER (MRANV= 100,MGFUN=20).and. PARAMETER (MPERT=201)

due to name conflicts with those accessible by Use statement.f

BUG "skip"
Use nessus_derived_types.90, so that its dummy arguments can point to

the variables in nessus_derived_types.f90

Use master_aaram, so removed: parameter (MRANV= 100,MGFUN=20)

2nd select case for method is inside a case(mv,amv,amv+)
and contains cases for monte, user, lhs, ...etc

MOVED it outside of 1st case. It was obviously written for a reason.
THEN had to REMOVE RETURN statement that was inside the 1st select case

because some of the calculations in the 2nd select case would never have been

performed.
BUG "idist"

Open-file_means, file_sd, file_q99 for STUDY

file_means, file_sd, file_q99 for STUDY

max_eorrDiag
sample_con(max_corrDiag)

initialize sample_corr(max_eorrDiag)

Output explanation of origin of approximate statistics for Z.

Assign xmean, xdev, and iname.

Around line 777, it was beta_factor=1.0, changed to 0.0, see BUG_"radius".
In write_fpi_deck subroutine, include .or.trim(padeP/omethod_'LHS' around line 772.

SET common/tmne/tlower(RV#) and tupper(gV#) to rv_def(RV#)%lower and upper

around line 573, in the case of 'MAXIMUM ENTROPY'

Mapdist needs it (also the lhs thread). It is assigned in the Monte thread in inranv.f.

CHANGED xupper(RV#) = dble(rv_def(RV#)%upper) was %lower and not double

CHANGED xlower(RV#) = dble(rv_def(RV#)%lower) was not double
Does not assign ADJ(J) correctly!!@#

Reason Added

To break out of the *NESSUS monte thread right before the fpi subroutine.
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!lhs_xsample.fgO
!lhscalc.fgO
!wdte_files.tg0
!error_files.D0
!eale_statistics.D0
!eorr_control.tg0
!
!Item
!
!GUImethod

!INPUT ECHO

!BUG_"sldp"

!BUG_"sldp"

!BUG_"skip".fixed

!DIST(i)

!BUG "idist"

!BUG "idist"

!

!

!

!

!BUG "idist".fixed

!BUG "seed"

!BUG_"seed",fixed

(temporary fix)
!SMX Correlation

!BUG "corrl"

!BUG "rvdet"

!BUG_"problem_statement"
!

!BUG_"open_error"

!BUG "corr2"

ANALYTICAL 1....

the

To obtain samples used for calculations.
To do lhs calculations.

To have a single subroutine that writes to files

Single subroutine to write error messages
Has subroutines that calculate needed statistics.

To transform sample to one with desired correlation.

Comment

Writes padef%method=HYPER to dat file, but error
calls in stuff commons.D0 are for LHS
calls in other-routines...

I wrote LIdS in .dat file.

Now echoes the new dat file for LHS.

MC1000, no sensitivities ifixskip or iuskip != 1.

Nothing in .smx or .smu if ixskip or iusldp != 1.
monte.f :: (mod(I,IUSKIP), changed I to icount

DIST(i) is of type real*8 (double), rv_def(i)%idist is of type INTEGER, only a comment
but info was used inside stuff commons for BUG "idist"

rv_def(i)%idist never assigned in a *NESSUS, */_ONTE thread

Added SELECT CASE (trim(padef%method))

CASE(_VIONTE','LHS','MV','AMV','AMV+') to stuff_commons.D0

within that I moved SELECT CASE (trim(rv_def(i)%dist)) from the
CASE('MV','AMV','AMV+')

which was inside of the DO i= 1,global%numrv loop.
That is why 'MV','AMV',and,'AMV+' is also there.
'LHS' is there because it also needs it.

Then added rv_def(i)%dist and dist(i) assignments.

This also seemed the appropriate place to assign dist(i)

I need it because mapdist.f is called in a *NESSUS *LHS thread

It is assigned in the inranv.f subroutine, which *LHS never reaches,

and the *NESSUS, *MONTE thread would get to it by:
new_nessus->fpi->fsetu 1 ->fsetup->redprm->redmod->inranv

dist(i) assigned inside the IF(DINAD(1:4).EQ.DINAM(JJ) around line 86.

Be carefuL.go to the CASE('MV','AMV','AMV+'), there might be a possible incorrect

reassign of dist(i) inside the same do loop, but it gets reassigned later in the previously
mentioned way.

padeP/oseed is REAL*4,

But the argument in mndom(padef%seed) must be double precision.

Transfering data form *4 to *8 to *4, then when transfering to *8, tnmeation happens
and the seeds are no longer the same. The random number generator is extremely
sensitive to changes in the seed.

padeP,6seed is defined: in process__padefine->parser.f, where it must be REAL*4

Added padef%dseed to nessus_derived_types.f90, initialized it in init_input.f90
and later in process padefine.f90.

eomp%temp_dble(mranv,2) added to nessus_derived types.f90, need a double

R seems, from monte.f aroung line 551, if there is correlation
that the .smx file's input vector is changed and not the zlevels

If correlation, then random variable statistics printed in monte.fare incorrect.

••modified name "T "and mean, std are not good. Source is probably cmpfpi.f.

If you use gui to enter mean / std.d, and have too many digits, they get printed

together in the *NESSUS dat file. Error when trying to run. See
SAE7NC 1BUGinRVDEFINE.

If you enter g-function equations that go past the size of the problem statement window
and save the work, the parts that went past the window will be lost•

Parsing error, see and tryto open CASE10/BUG OPEN ERROR SAE1NCI.dat

Work around, move *MODEL analytical_2., und-erzl 0+l-mderz 11 t'o separate line.

Original line is only 80 characters but how does parser et. al. work..

LHS Correlation, in stuff commons, the dependent variable loop goes from 1 to zero,
therefore, error messages are automatic. Random variable not found in

>>_lobal%uuma v aad _ubal%uutudv du¢_ not get if cbql_ttu number of oonelations are

present.
See CASEI\SAE1NC1LGOOD.txt and CASEI\SAE1NC1LERROR.txt and notice that

onlydifference
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!

!BUG"mdins"
!BUG_"radius".fixed
!BUG_"approx_stat"

!
!

!
T
!WHOOPS!!?
!BUG_"eody_bugl"
T

!BUG_"cody_bugl".tempfix
!BUG"ADJ(J)"
_BUG_"ADJ(J)".fixed
l

isthatonecorrelationis added. Goto process_rvdefine.

WorkA_und=> GOOD ERROR (the space after ai)
ai, e, 0.0 ai, c, 0.0

MC seodefpi.dat file has radius=l.

stuff_commons.D0, around line 777, it was beta_faetor=l.0, changed to 0.0

Approximate statistics in geoeff.f for igform=6

MIGHT be incorrect, if the form of the approximation is:

exactly like it was written in the senstv subroutine
g=e0+Sum {e(k, 1)(xk-xk0)}+ FIRST ORDER PART

Sum_ij {emix(i,j)(xi-xi0)(xj-xj0)}NEGLECT 2nd order terms
Then

mean_g = c0-Sum{c(k,1)xk0}+Sum{c(k,1)xk0}

mean_g = c0 = g(mean)

rv_def(i)%mapping(j)%blocks in echo_input is zero at the time of subroutine use.

infinite do loop

WRITE(*,*) 'LINE START LINE END' + other stuff
?? get rid of rv_deP/omedian in nessus_derived_types and init_input

Stuff_commons does not assign it correctly. Monte thread assigns it way down the
line in the inranv.f subroutine...

add ADJ(J) = 1.0 in stuff_commons.D0 around line 574

!*********** END TEMP NOTES ********************************

!0 Revision log:

!0 Initial programming LANL NESSUS 2.4 dsr
_0

!1 Purpose:

! 1 To perform latin hypercube sampling, finish the
! 1 analysis and stop the program.

!2 Calling Argument Input:
!2 None
!2

!3 Calling Argument Output:
!3 None

!3

!4

!4
!4

Internal Variables and Arrays

!5 Used by:

!5 new_nessus.f90

!6 Routines called:

I6 None

!7 Modules Used

!7 master param.tgO

!7 nessus_dedved_types.tgo

!8 Assumptions and limitations

!8 Only for plevels analysis.
!8 No confidence checks.

!8 Only component analysis.

_9

!9 COPYRIGHT 1998 BY SOUTHWEST RESEARCH INSTITUTE, SAN ANTONIO, TEXAS
_9

! Declare Modules (Global)
!

USE nessus_derived_types

USE master_param

! Declare calling arguments
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! Declare local variables

double precision :: x_variable_array(padeP/oisamp,global%numrv)

! This should be done in read_nessus_input.f90, up to *should
mssg%descfiption="input_echo"

mssg%files(1 : 1)=(/file_out/)

call write_filesO

mssg%deseription="lhs_header"

mssg%files(l:4)=(/file lhs x rdm, file_lhs p_rdm,file_lhs_x_corr,file_lhs__p_corr/)

call write_files0
! *should

call lhs_xsample(x_variable__army)

! Send off for calculations.

mssg%deseription = "output_header"

mssg%files(1:2) = (/file_out, file__consl/)
call write_files0

call lhs_eale(x_variable_array)

STOP

RETURN

END

FILE (2): lhs xsample.f90

SUBROUTINE lhs_xsample(x_variable_array)

! Latin Hypemube X-Sample Generation
!

!

! Cody Godines, September 2001

!

!9

!9 COPYRIGHT 1998 BY SOUTHWEST RESEARCH INSTITUTE, SAN ANTONIO, TEXAS
!9

!

! Declare Modules (Global)

USE nessus_derived_types

USE master_param

! Declare calling arguments

double precision :: x_variable_army(padeP/oisamp,global%numrv)
! Declare local variables

integer rdm int array(padeWoisamp,global%numrv)

double precision prob_variable_array(padetZ,6isamp,global%numrv)

! Fill ranom int_array with random, uniformly, equal probability
! non-repeaffng integers along the first dimension (padeP/bisamp)

do j=l, global%numrv

call raniset(padeP/oisamp, rdm int army(l:padef%isamp,j))
end do
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! Generate Probability(O, 1) Samples

! Fill prob_variable_array

! Fill x variable_array
do i= 1,padePAisamp

Probability(O,l) is percentage increase in probability from the random bin number begining.

This locates the cumulative probability for that RV, for the current bin.

Get u space coordinate by inverting the standard normal distribution.

do j=l, global%numrv

prob_variable_array(i,j)=(dble(rdm int array(id)-l)+&

&random(padeP/ods eed))/dble(padePAisamp )
calc%prob(j) = prob_variable_array(i,j)

enddo

Get x space coordinate by inverting respective distribution.

calc%temp_dble( 1 :mranv,1 )=(/(dble(rv_defO)%mean)d= 1,mranv)/)
calc%temp dble( 1 :mranv,2)=(/(dble(rv_def0 )%std) j=l,mranv)/)

call mapdist(global%numrv,calc%prob,calc%temp_dble( 1 :mranv,2),&

&calc%sample_stat,calc%temp_dble( 1 :mranv, 1),x_variable_array(i, 1 :global%numrv),rv_det%idist,ierr)

end do

! Calculate Statistics of Samples

if(padePAisamp.le.3000) then

call calc_stats(prob_variable_array)

mssgValescdption= "lhs_statistics"
mssg%files( 1:1)=(/file_lhs_p_rdm/)

call wfite__files0

! TIME CONTROL L@@K

call cale_stats(x_variablearmy)

mssg%description="lhs_statistics"

mssg%files(l:l)=(/file lhs x rdmO

call write filesO

! Write random sample to files.

do i= 1,padef%isamp

calc%prob( 1 :global%numrv)=(/(pmb_variable_array(ij) j = 1,global%numrv)/)
calc%x( I :global%numrv)=(/(x_variable_array(i,j)j= 1,global%numrv)/)

if(i= 1) mssg%big_string="seetion_header"
mssg%description="lhs_samples"

mssg%ffies(l:2)=(/file lhs x rdm,ffie_lhs_p_rdm/)

call wfite_friesO
end do

! CORRELATION CONTROL

! Transform to new sample set with desired correlation

call eorr_control(x__variable_array)
! Get probability array that is the CDF of the individual variables of the x variable array.

! alpha...beta *****<<<<<< WATCH IT FOR THE NEEDED PARAI_ETERS -

do i= 1,padef%isamp

do j=l,global%numrv

call CDFPDF(1.0d0,1.0dO,dble(rv defO )%idist),x_variable_array(i,j ),&
&ealc%temp_dbleO, 1),calc%temp_dble 0 ,2), 1,prob_variable_array(ij ),pdf junk,j)

end do

end do

Calculate Statistics of New Samples

call calc_stats(prob_variable_array)
mssga/ateseription= "lhs_statisties"

mssg%files( 1:1 )=(/file_lhs__p__corr/)

call wrlte__laies O

call calc_stats(x_variable_array)
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mssg%description="lhs_statistics"
mssg%big_string='desired"
mssg%files(l:l)=(/file lhs x eorr/)

call write filesO

! Write correlated sample to files.

do i= 1,padel%isamp
calc%prob( 1:global%numrv)=(/(pmb_variable_array(i j )j = 1 ,global%numrv)/)

end do

end if

I_@K

if(i_ 1) mssg%big_string="section_header ''

mssg%description="lhs_samples ''
mssg°/ofiles( 1:1 )=(/file lhs_p_eorr/)

call write_filesO

! END TIME CONTROL

! Because output contains sample statistics and ifpadef%isamp > 3000 then those statistics
! are never calculated, but there is a residual in calc%sample_stat left over from map_dist()

! above.

if(padef%isamp.gt.3000) then ! TIME CONTROL L@@K

do j= l,global%numrv

calc%sample_stat(j, 1)= calc%sample_stat(j, l)/dble(padef%isamp)

talc%sample stat(j,2) = SQRT((1.0d0/(dble(padef%isamp)- 1.0d0))*&
&(calc%sample_stat(j,2)-dble(padef%isamp)*ealc%sample_stat(j,l)**2))

end do

end if ! END TIME CONTROL

I_@@K

RETURN

END SUBROUTINE lhs_xsample
!-
!.

subroutine raniset( n, iset )
!

!Randall Manteufel, 2001, UTSA

!randomnly fills the integer array with values from 1 to n

!the array is of length n, each entry has a unique value
!and all values from 1 to n are in the array/set one and only
!one time

l

!n = input, integer, length of array values

!iset(n) = output, integer, array of values
!

implicit double precision (a-h,o-z)

dimension iset(n)

doi2 = 1,n

iset(i2) = i2
enddo

! extra loop to ensure randomness, ijunk =2

do ijunk = 1,2

doi2 = l,n

k = iranu(1 ,n)

ik = iset(k)
iset(k) = iset(i2)

iset(i2) = ik
enddo

enddo

return
end subroutine raniset
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functioniranu(ilow,ihigh)

use nessus__derived_types
!Randall Manteufel, 2001, UTSA

! integer random sample from uniform pdf
!

! ilow = input, integer, low value ofpdf
! ihigh = input, integer, high value ofpdf

! imnu = output, integer, sampled value

! Note: ilow <= iranu <= ihigh

nbin = ihigh - ilow +1
iranu = ilow + int(random(padeWodseed) * dble(nbin) )

return

end function iranu

FILE (3): calc statistics.f90

!This file calculates statistics of variables or sets of variables

SUBROUTINE calc_stats(variable_array)

USE nessus_derived_types

USE master_param
! Declare Calling Variables

double precision :: variable_array(padef%isamp,global%numrv)

! Declare Local Variables

double precision :: variable_vectorl(padel_/_isamp)
double precision :: variable_vector2(padeWdsamp)

!integer :: last_header_line, skip_line
!last header line=7

! P_AD IN-VALUES

!igtotal = global%numrv

!do k= I, count(mssg%files.ge.0)

! do i= 1, padef%isamp
! rewind(mssg%files(k))

! skip_line=last_header_line+(i - 1)

! read(mssg%files(k),'( <skip_line>/,<igtotal>(e20.10 e3,4x) )') (variable_array(i j )j= 1,global%numrv)
! end do

! ACTION with VALUES

! Mean and Standard Deviation of Samples
oalog/,,_amplo_otat( 1:mranv, 1 :'_) -- O.OdO
do j= 1,global%numrv

do i= 1,padeWoisamp

0alc%samplc._stat(j,l ) = calc%sample stat(j, 1)+variable_array(i j)
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calc%sample_statfj,2)=calc%sample_stat(j,2)+variable_array(ij)**2
enddo

calc%sample_stat(j,1)=calc%sample_stat(j,1)/dble(padef%isamp)
calc%sample_stat(j,2)=SQRT((1.0d0/(dble(padet%isamp)-1.0d0))*&
&(calc%sample_stat(j,2)-dble(padef%isamp)*calc%sample_stat(j,1)**2))

enddo

Correlation

Normaldata(atleastonevariablenormal)usecorrelationcoefficient,r.
Non-normaldata,useSpearmanrankcorrelation.

Checkformonotonicrelationbetweentwovariables.
X2>X1=>Y2>=YI formonotonicincrease.
X2>X1=>Y2<=YIformonotonicdecrease.

! CorrelationCoefficient(Linear,Pearsons),willonlyworkifthereisalinearrelationshipbetweenthevariables.
! Ameasureofhowclosedataresemblesastraightline.Couldhaveperfectpredictionwithoutastraightline.

talc%sample_tort(1:max_eorrDiag)=0.0d0
i_sample_corr_list=0
!Forallcombinations
doi=1,global%numrv

doj=l,i
i_sample_corr_list=-i_sample_corr_list+1
!Calculations
doin=1,padeff/oisamp

calc%sample_corr(i_samplecorr_list)=calc%sample_corr(i_sample_corr_list)&
&+(variable_array(in,i)-calc%samplestat(i,1))*(variable_array(in,j)-

calc%sample_stat(j,1))&

enddo
enddo

&/(dble(padef%isamp)*calc%sample_stat(i,2)*calc%sample_stat(j,2))
enddo

!
!
indicates

!
!

!
!

!

!
!

!
!

CorrelationCoefficient(Spearmanrank)
Spearmanrankcorrelationcoefficient.

Distributionfreecorrelationanalysis.Canworkondiscreteorcontinuousdata(likeregression),but
worksonranked(relative)data(userank-ordernumbers). A Spearman'srscoefficientclosetoone

goodagreementand
closetozero,pooragreement.Itis similiar to the R^2 value of regression. No assumptions are made

about the distribution of the underlying data.

Spearman's method works by assigning a rank to each observation in each group separately
(contrast this to rank-sum methods in which the ranks are pooled). Then calculate the sums of the squares

of the differences in paired ranks (di^2) according to the formula:

rs = 1 - 6"(d1^2 + d2^2 + ... + dn^2)/(n(n^2-1)),
in which n is the number of observations.

dl=rank(Xl)-rank(Yl)
rank of X 1 is an integer between 1 and the number of observations. Rank(X1)= 1 if X1 is the smallest

value in the set of all X's. Rank(X1)=#observations if X1 is the largest in the set of all X's.

Yes, the value indicates the "strength" of the relation, but quantifying the strength is complex.

Therefore, it is considered to be a non-parametric test.

The scale is ordindal.

! Significance?
cale%spearman__corr(l :max_corrDiag)= 0.0d0

i_spearman corr list=0
! For all combinations

do i= 1,global%numrv

do j=l,i
i_spearman corr list=i_spearman corr list+l
!Calculations

call vector_rank(variable_army(1 :padef%isamp,i),variable_vector 1,padef%isamp)
cau vector_ranR(varlame array(l :paaex_/olsamp,j),vaname_vectorz,paaerTolsamp)

do in= 1,padeP/oisamp

calc%spearman_corr(i_spearman_corr_list)=

calc%spearman_corr(i_spearman_corr_list)&
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&+(variable_vector 1(in)-variable_vector2(in))**2
end do

calc%spearm_ corr(i_spearman_corr_list)= 1.0d0-
6.0d0 *calc%spearman_enrr(i_spearman_corr_list)&

&/(padef%isamp *(padef%isamp * "2-1.0d0))
end do

end do

! ACTION END

!end do

RETURN

END SUBROUTINE talc stats

SUBROUTINE vectorrank(var_vector, rank_vector, length)
! Declare calling arguments

integer length

double precision :: var_vector(length)
double precision :: rank_vector(length)
! Declare local variables

double precision :: temp_vector(length), larger than

t emp_vectot=var_vector

larger_than=2 *dsign(maxval(temp_vector,DlM= 1), 1.0d0)

do i= 1,length

min_loc=minloc(temp_vector, DIM= 1)

rank_vector(min_loc)=dble(i)

temp_vector(min_loc)=larger_than
end do

RETURN
END SUBROUTINE vector rank

SUBROUTINE VECTOR_STATS(VECTOR, LENGTH)
Use nessus derived_types

! declare calling variables
double precision vector(length)

integer length
! declare local variables

calc%z_sample_stat( 1:2)=0.0d0
do i=l,length

calc%z_sample stat(l ) = calc%z_sample_stat( 1)+vector(i)

calc%z_sample_stat(2) = calc%z_sample_stat(2)+vector(i)**2
end do

calc%z_sample_stat(1 )= calc%z_sample_stat(1)/dble(length)
calc%z_sample_stat(2) = DSQRT(( 1.0d0/(dble(length)- 1.0d0))*&

&(calc%z_sample_stat(2)-dble(length)*calc%z_samplestat(1)**2))

write( 104,'(e25.10 e3)') calc%z_sample_stat(1)

write( 105,'(e25.10 e3)') calc%z_sample_stat(2)

!cody_ADD begin/end

!cody_ADD begin/end

RETURN

END SUBROUTINE vector stats

FILE (4): corr control.f90

Obtain desired correlation from a sample set.
REFERENCE

I_R_L.L. and Conover, W.J. (1982)

A Distribution-Free Approach to Inducing Rank Correlation Among Input Variables
Kraus, Allan D. (1987)

Marices For Engineers (Cbolesky Decomposition)
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SUBROUTINE corr_control(variable_array)

USE nessus_derived_types

USE master_pavam

! Declare Calling Variables
double precision :: variable__array(padeP/oisamp,global%numrv)

! Declare Local Variables

double precision :: temp_corr_coef(eorr_def%ncor)
double preclslon :: corr_desired(global%nulm'v,global%numrv)

double precision:: Plow(globat%numrv,global%numrv)

!double precision :: Pupp(global%numrv,global%numrv) !cody Temp Add debugturn off

double precision :: rstar(padef%isamp,global%numrv)

double precision :: r_scores(padeP/oisamp,global%numrv)

double precision :: variablevectorl(padeP/oisamp)
double precision :: variable_vector2(padeP/oisamp)

integer :: random_vector(padef%isamp)

corr_desired( 1 :global%numrv, 1:global%numrv)=O.OdO

! REARRANGE DESIRED CORRELATIONS to be in the proper order.

! Lower half of a correlation matrix, not including the diagonal,

! from top to bottom, left to right.

if(corr_def%nco_0) then

do i= 1,global%numrv

corr_desired(i,i) =l.0d0
end do

else

temp_corr_coef( 1 :corr det%ncor)=corr_def%eoef(l :eorr_deP/oncor)

corr_deP/ocoef(1 :max__corr) = 0.0d0
end if

do i corr list=l, corr def%ncor

- - do i rv num= 1,global%numrv

if(trim(corr_deP/orv(icorr_list,1))=--_rim(rv_def(i_rv_num)%name) ) then
i row num=i rv num

end if

if(trim(corr_def%rv(i_corr_list,2)_-trim(rv_def(i_rv_num)%name) ) then
i col num=i rv num

end if

eorr_desired(i_rv_num,i_rv_num) = 1.0d0
end do

if(i_eol_num.gt.i_row_num) then

i_temp_num=i col hum
i col num=i row num

i row num=i_temp hum
end if

icorr_list__mapped = 1
do i to rew=2,i_row_num

do i to col=l,i_to_row-1

if(i_to row.ne.i row hum)i_corr_list__mapped=i corr list_mapped+l
end do

end do

i_eorr_list_mapped=i corr list mapped+(i_col__num-1)

corr_deP/oenef(i__eorr list_mapped)-_emp_corr_coef(i_c orr_list)

corr_desired(i row_num,i_eol_num)=corr_deP/ocoef(i_corr_list mapped)

eorr_desired(i_eol_num,i_row_num)=corr_deP/ocoef(i_corr_list_mapped)
end do

I

!

I TI_]_O PdI_TIC.A-L.

!

X uncorrelated with correlation matrix, I.

C is desired correlation matrix. Positive definite and symmetric.

Therefore, it may be written C=PP '.

P is a lower triangular matrix.
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! XP'hasdesiredcorrelationmatrix,C.
! APPLICATION
! Checktoseeifdesiredcorrelationmatrixispositivedefinite.Notyet.
!

! Acceptthedesiredcorrelationmatrix[C]sampleset,givenbytheuser
! tobethetargetrankcorrelationmatrix[C*]ofthesampleset.
! C*= C

! Cholesky factorization scheme. Obtain lower triangular matrix, P, such that
! C = PP'
!

Plow(1 :global%numrv,1 :global%numrv)=O.OdO
do i= l,glohal%numrv

do j= 1,i

if((i_l).and.(j_i)) then

Plow(i,j )=dsqrt(enrr desired(i,j ))

else if (j.ne.i) then

Plow(ij )=corr_desired(i,j)
do m=l,j-1

Plow(i,j )=Plow(ij )-Plow(j ,m)*Plow(i,m)
end do

Plow(i,j )=Plow(ij )/Plow(j,j )

else if((i.ne. 1).and.(j_i)) then
Plow(i j )=corr_desired(ij )

do m=l,j-1

PIow(i,j)=Plow(i,j )-Plow(j ,m)*Plow(i,m)
end do

Plow(i,j)=dsqrt(Plow(i,j))
end if

end do

end do

Begin with R, with rank correlation matrix, I.
:: Use Van der Waerden scores

Transform RP' = R*.

The rank correlation matrix M of R* would be close to C* = C.

rscores(l :padef%isamp, 1:global%numrv)=0.0d0

do j=l, global%numrv
call raniset(padet_/oisamp,mndom_vector)

do i=l, padeWoisamp

rscores(random_vector(i),j_-xinv(dble(i)/(dble(padef%isamp+ 1)))
end do

end do

mulltt multiplies the second army by the transpose of the third array and returns the first
rstar( 1 :padeWoisamp, 1 :global%numrv)=0.0d0

call multt(rstar,r_scores,Plow,padef%isamp,global%numrv,global%numrv)

! Reorder columns of X (individual variables) to have same rank as R*.

! Thus, X will have the same rank matrix as R*.

! X will also have rank correlation matrix, M, close to C* = C.

do j= 1,global%numrv

call vector_rank(variable_array( 1:paaet%lsamp,J ),vanat_le_vectorl ,paoer'/olsamp)

call vector_rank(rstar(1 :padet%isamp,j),variable_vector2,padef%isamp)

do i= 1,padef%isamp

do i_rstar = 1 ,padef%isamp
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if(int(variable_vector1(i)+0.1d0)==int(variable_vector2(i_rstar)+0,ld0))then
rstar(i_rstar,j)=variable_array(i,j)

endif
enddo

enddo
enddo
variable_array=rstar
RETURN
ENDSUBROUTINEcorrcontrol

FILE (5): lhs calc.f90

SUBROUTINE lhs_calc(x_variable_array)

! Latin Hypercube X-Sample Calculations

! Cody Godines, September 2001
!,

!

!***********

!:

!Item

!***********

!0 Revision log:
]0

_0

TEMP NOTES ********************************

Comment

END TEMP NOTES *****************************

Initial programming LANL NESSUS 2.4 dsr

! 1 Purpose:
! 1 To perform latin hypercube sampling, finish the

! 1 analysis and stop the program.

!2 Calling Argument Input:
!2 None

!2

!3 Calling Argument Output:
!3 None

_3

!4

!4 Internal Variables and Arrays
_4

!5 Used by:
!5 new nessus.f90

!6 Routines called:

!6 None

!7 Modules Used

!7 master_param.fg0

!7 nessus_derived_types.f90
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!8 Assumptionsandlimitations
!8 Onlyforplevelsanalysis.
!8 Noconfidencechecks.

!9
!9COPYRIGHT1998BY SOUTHWEST RESEARCH INSTITUTE, SAN ANTONIO, TEXAS
!9

! Declare Modules (Global)
!

USE nessus_derived_types

USE master_param

! Declare calling arguments

double precision :: x_variable_array(padet%isamp,global%numrv)
! Declare local variables

double precision :: z_vector(padef%isamp)

double precision :: z_sorted(padef%isamp)

do i= 1,padet_/_isamp

call evaluate models(file_out,0,x_variable_array(i, 1:global%numrv),z_vector(i),ierr)
ealc%x( 1 :global%numrv)=(/(x_variable_army(ij),j= 1,global%numrv)/)

calc%z = z_vector(i)

end do

if(i.le.3000) then !TIME CONTROL L@@K
if(i==l) mssg%big_string="section_header ''

ms sg%description="lhs_samples"

mssg%files(l:l)=(/file lhs x corr/)

call write_files0
end if !TIME CONTROL L@@K

call vector_stats(z_vector(1 :padet%isamp), padeP,6isamp)

ms sg%description="output_statistics"
mssg%files(1:2)=(/file_out, file_consl/)

call write_files0

z sorted=z vector

call qsort(padet%isamp, z_sorted)

do i=l,padef%nlevels
calc%prob(1 ) = cdfnof(dble(padei%levels(i)))

nfind = int(dble(padef%isamp)*calc%prob(1)+0.50000000d0)

calc%temp dble(l, 1) = dble(nfind+0.01 dO)

calc%temp_dble(1,2) = dble(padet%levels(i))

c alc%z=z_sorted(nfind)

begin/end

end do

if ((calc%prob(1).ge. 0.990).and.(calc% prob(1 ).1e.0.991)) then

end if

write(106,'(e25.10 e3)') calc%z

!cody_ADD begin/end

if(i= 1) mssg%big_string="section_header"

if(i_-padef%nlevels) mssg%big_string="section_.end "

ms sg%description="output_cdf '
mssg%files(1:2)=(/fileout, file_consl/)

call write_files0

!cody_ADD begin/end

!cody ADD

RETURN
E]_D _3UDROUT_qE Ilia t, alt,
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FILE (6): write files.f90

SUBROUTINE WRITE_FILES0

! Write Files

I Cody Godines, September 2001
!:

!0 Revision log:
!0 Initial programming LANL NESSUS 2.4 dsr
_0

T1 Purpose:

!1 To write any file or screen output
!1

!2 Calling Argument Input:
!2 None
!2

!3 Calling Argument Output:
!3 None
_3

!4

!4 Internal Variables and Arrays
!4

!5 Used by:

!5 Any subroutine requiring amessagc written to file(s)

!6 Routines called:

!6 None

!7 Modules Used
!7

!7

Assumptions and limitations

!9

?9 COPYRIGHT 1998 BY SOUTHWEST RESEARCH INSTITUTE, SAN ANTONIO, TEXAS

USE master__param

USE nessus_derived_types
! Declare calling arguments
!

! Declare local variables

double precision :: corr_desired(global%numrv,global%numrv)

I Begin

! Write for each file in mssg%files that has been assigned a value >=0.

do j= 1, count(mssg%files.ge.0)
rewind file dat

select case (_Sm(mssg%deseription))

o_eo(';np;lt or, hn')

write(mssg%files(j),'("l",78("="),/,27X,10("*")," ","INPUT ECHO"," ",10("*"),/,79("="),//)')

write(mssg%filesG),'C LINE",/)')

do 130 i=1,200000

read(file_dat,'(A)',end = 130) mssg%big_string
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write(mssg%files(j),'(1X,I6,3X,A)')i,mssg%big_string
130continue
write(mssg%files(j),'(//,79("="),/,79C="))')

desired

case("lhs._header")
write(mssg%files(j),200)global%title,padeP/oisamp,global%numrv,global%num_zfmodel
200 format("#Latin Hypemube Sampling Matrix File",/,&
& "# JOBID: ",A<len_trim(global%tifle)>,/,&

& "# For each row(1 :# Samples =",I10,") : Input_Vector( 1 :#RVs =",I3,") GNFS(1 :#GFNS=",B,")")

if (mssg%files(i)==100 .or. mssg%files(j)==101)then

write(mssg%files(j) ,'("# These are RANDOM SAMPLES with SPURIOUS CORRELATION between variables.")')
elseif (mssg%files(j _ 102.or. mssg%files(j) == 103 )then

write(mssg% files(.j) ,'("# These are RANDOM SAMPLES with ADJUSTED CORRELATION between variables.")')
endif

if (mssg%files(j)==100) then

write(mssg%files(j) ,'("# LHS X SAMPLES :: LHS_PROB_SAMPLES(0,1) then INVERT RESPECTWE PDF",//)')
elseif (mssg%files0)-_ 101) then

write(mssg%files(j) ,'("# LHS_PROB_SAMPLES :: Randomly sample from each probability bin and randomly pair up
coordinates",//)')

elseif (mssg%files(j) == 102) then

write(mssg%files(j) ,'("# LHS X SAMPLES :: DECOMPOSE random LHS X SAMPLES to yield samples with

correlation",//)')

elseif (mssg%files(j_ 103) then
write(mssg%files(j) ,'("# LHS_PROB_SAMPLES :: LHS X SAMPLE adjusted for correlation and calculate cumulative

probability",//)')
endif

case("lhs_statistics")
igtotal = global%numrv

write(mssg%files(j), '("MEAN of SAMPLE (by columns = random variable)")')
o o

write (mssg%files(j),'(<igtotal>(e20.10 e3,4x),/)' ) (talc Vosample_stat(irv, 1 ),irv = 1,global Vonumrv)

write(mssg%files(j), '("STANDARD DEVIATION of SAMPLE (by columns = random variable)")')
o o

write (mssg%files(j),'(<igtotal>(e20.10 e3,4x),/)' ) (talc Yosample_stat(irv,2),izw = 1,global _numrv)

write(mssg%filesfj), '("CORRELATION COEFFICIENT MATRIX (Linear) ")')

i_sample_corr_list = 1

do i= I ,global%numrv

write (mssg%files(j),'(<i>(e20.10 e3,4x))' ) &
&(calc%sample corr( isc),isc=i_sample_corr_list,i_sample_corr_list+i- 1)

i_sample_corr_list=-i_sample_corr_list+i
end do

if(trim(mssg%big_slring)=="desired '') then

I Map corr_deP/ocoef to full matrix, to be used in write statement

! Already been formatted to proper lower form.
i corr list=-I

do icon -= 1,global%numrv
if (i_corr-_ 1) then

corr_desired(i_corrj _corr)= 1.0dO
else

do jcort = 1 ,i_corr

if(i_corr==j_corr) then

corr_desired(i_corr j_corr) = 1.0d0
else

corr_desired(i_corr j_corr)=corr_def%coef(i_corr_list)
corr_desired(j_corr,i_corr)=corr_desired(i__corr,j_corr)
i corr list=i corr list+l

eno 1I

end do
end if

end do
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write(mssg%files(j),'(/,"SPEARMAN RANK CORRELATION COEFFICIENT MATRIX \

DESIRED ")')

i_sample_corr_list = 1
do i= 1,global%numrv

write (mssg%files(j),'(<igtotal>(e20.10 e3,4x))' ) &

&(cale%spearman_corr(isc),isc=i_sample_corr_list,i_sample_corr_list+i-

1),(corr_desired(ijdes) j des=i+ l ,global%numrv)
i sample_corr_list=i_sample_enrr_list+i

end do

else

end if

write(mssg%files(j), '(/,"SPEARMAN RANK CORRELATION COEFFICIENT MATRIX ")')

i_sample_corr_list =-1
do i= l ,global%numrv

write (mssg%files(j),'(<i>(e20.10 e3,4x))' ) &

&(calc%spearman_corr(isc),isc=i_sample_colr_list,i_samplecorr_list+i - 1)

i_sample_corr_list=i_sample_corr_list+i
end do

case("lhs_samples")

if(tdm(mssg%big_string_"section_header") write(mssg%files(j),'(/,"***** SAMPLES *****")')

igtotal = globa1%numrv
if (mssg%files(j_100) then !lhs x random

write (mssg%files(j), '(<igtotal>(e20.10 e3,4x))') &
&

elseif (mssg%files(j)-_ 101 ) then
write (mssg%filesO),
&

elseif (mssg%files(j)_ 102) then

write (mssg%files(j),
&

elseif (mssg%files(j_ 103) then

write (mssg%files(i),
&

endif

(calc%x(i),i= l,global%numrv)
!lhs p random

'(<igtotal>(e20.10 e3,4x))') &

(calc%prob(i),i = 1,global%numrv)
!lhs x correlated

'(<igtotal>(e20.10 e3,4x), e20.10 e3)') &

(cate%x(i),i = 1,global%numrv), ealc%z

!lhs p correlated

'(<igtotal>(e20.10 e3,4x))') &
(cale%prob(i),i = 1,global%numrv)

ease("output_header")

write(mssg%files(j),'("l",78("="),/,27X,10("*"), " "," OUTPUT SUMMARY"," ", 10("*"),/,79("="),//) ')

wdte(mssg%files(j),'(/,A)') " LATIN HYPERCUBE SOLUTION "
write(mssg°/ofiles(i),'(A,I3) ') " NUMBER OF VARIABLES ",global%numrv

write(mssg%files0),'(A,I9)') " NUMBER OF SAMPLES ",padeP,_isamp

case("output_statistics")

write(mssg%files(j),'(/,A)') " RANDOM VARIABLE STATISTICS "

write(mssg%files(j ),'(2x,A6,5 x,A5,11 x,AS,9x,A6,11 x,A6,8x,A7,7x,A7)') 'Random','Input','lnput','Sample','Sample','%
error','% error'

write(mssg%files0),'(1 x,A8,4x,A4,11 x,A9,7x,A4, I 1x,A9,8x,A4,7x,A9)') 'Variable','Mean','Std. Dev.','Mean','Std.

Dev.','Mean','Std. Dev.'

write(mssg%files(j ),"( 1x,<98>('-'))")

do i = l,global%numrv
write(mssg%files(j),'(lx,A8,2x,<6>(el2.6 e3, 3x))' )

rv_def(i)%name,rv_def(i)%mean,rv_def(i)%std,ealc%sample_stat(i, l)&

&,ealc%sample_stat(i,2),dabs((1.0d0-dble(rv_def(i)%mean)/calc%sample_stat(i, 1))* 100.d0)&

&,dabs((1.0d0-dble(rv_def(i)%std)/calc%samplestat(i,2))* 100.d0)
end do

write(mssg%files(j),'(/,A)') " RESPONSE STATISTICS "

write(mssg%files0),'(3x,A8,17x,AS)') 'Response','Response'

write(mssg%files(i),"(3x,A4,21x,A9,/,2x,<44>('-'))") 'Mean','Std. Dev.'

write(mssg% files(i), '(<2>(e20.10 e3, 5x))' ) calc%z_sample_stat(1), calc%z_sample_stat(2)

case("output_cdt")
if(trim(mssg%big_string)=="section_header' ') then

write(mssg%files(j),'(/,A)') " CDF SUMMARY "
write(mssg%files(j),'(5 x,A8,12x,A,20x,A2,11 x,A8,9x,A8)') Tr(Z<ZO)','U','ZO','#Pts<=ZO','Error( *)'

write(mssg%files(j),"(<90>('-'))" )
_d i£

write(mssg%filesfj) ,'(2x,<3>(e12.5 e3, 5x),I10,1 lx, e12.5 e3)') ealc%prob(1), cale%temp_dble(1,2), tale%z, &

& int(calc%temp_dble(1,1 )), 9999.9
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if(trim(mssg%big_string_"sectionend")then
write(mssg%files(j),'(4x,A);) "(*) Sampling Error at 95% Confidence"

end if

case default

end select

end do

! Rewind units
rewind file dat

! Reinitialize global variables

mssg%description

mssg%what_file
mssg%after

mssg%before

mssg%big string

mssg%files( 1 :file._tot_num)
RETURN

END SUBROUTINE WRITE_FILES

= REPEAT(" ",string_short)
= REPEAT(" ",stringshort)

= REPEAT(" ",stringshort)
= REPEAT(" ",stringshort)

= REPEAT(" ",string_.long )

=-l

FILE (7): error files.f90

SUBROUTINE ERROR_FILES(description,file,after,before)

!

!_d
! Error Files .....

.1Cody Godines, September 2001

,1

,10 Revision log:
,10 Initial programming LANL NESSUS 2.4 dsr

l0

!1 Purpose:
!1 To write error messages to the respective files.

!1

!2 Calling Argument Input:

!2 description

!2 file
!2 after

!2 before

.12

!3 Calling Argument Output:
!3 None

!3

14
_4

!4

Internal Variables and Arrays

!5 Used by:

!6 Routines called:

!6 None
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!7ModulesUsed
!7
!7
!8
_8
.18

Assumptionsandlimitations

_9

!9 COPYRIGHT 1998 BY SOUTHWEST RESEARCH INSTITUTE, SAN ANTONIO, TEXAS
_9

USE master_param

! Declare calling arguments

character*16, intent(in) :: description, file, after, before

select case (trim(description))

case("generie_stop")

write(*,*) "STOP DUE TO ERROR :",trim(description)
write(*,*) "File :",file

write(*,*) "After :",after
write(*,*) "Before :",before

stop
case default

write(*,*) "STOP DUE TO ERROR :unknown"
write(*,*) "File :",file

write(*,*) "After :",alter
write(*,*) "Before :",before

stop
end select

RETURN

END SUBROUTINE ERRORFILES
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APPENDIX IV-D:

Non-Linear Models

NONLINEAR REGRESSION BY LEAST SQUARES FOR
LOG-LOG COV PLOTS

_i_i_i_i_i:_!_ _3nte Carlo _ ) for Test Case
iiiiiiii_iiiiiii iiiiiii!!iiiiiiiiii

iii!iiiiii!i_!i !?!_!_i_

iiiiiiiiiiii_ii!ili ............

0 200000
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400000 600000 800000 1 x 10 6
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i!!iiiiii_i!i!!

[Ratkowsky, p87] m<0 for that shape.

Log[y(x)] = Log[cx 'n] = mLog[x] + Log[c]

2

: 2I_o.ty_x,_,_-_o.t_)
j=!
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a_: _22(mLogtx,l+Log[_I- Logrt,1)L°_[_]
(_C j=l C

where,

d {Log a[c] } _ Log a[e]

de c

m_. Log[xj] + rLog [c] - Log[fi s] = 0
j=l j=l

£ Log [_ j ] - rLog [c]
j=l

m=

Log[xs]
j=l

0

r

OE _ _, 2(mLog[xj l + Log[el - LogE_ j l)Log[xj ] = 0
Om j=1

r r r

m_" (Log[xjl_ + Log[elY" Log[xj]- y' Log[_s]Log[x j ] = 0
j=l j=l j=l

The result of the m substitution

(£)Log[fi j ] - rLog[c] r r r

I -'=_ _ LE(_o.Ex_]Y + _ogMy:o.Ex,]- y:o.E)_]_ogExj]=0

t Zs_ogrxDj;=l ., j=l

r r r r

Z LogtxjlZLogty,]Logtx,l- ZLogty,]Z(Logtxj]y
Log[c] = j=l j=l j=l j=l

/£ r j_=l (L)2)
Log[xj ]_ Log[xj ] - r og[xj ]

k. J =1 1=1

= value

c = 10 value
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Fit and Error in COV-n space

MC and LHS COV curve fit in COV-n space for test case 1 (COV of standard deviation)
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This shows the MC and LHS absolute value of the error between curve fit and data
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